Benchmarks
- Actualizado (01.12.2005)

Benchmarks Subsistema Beowulf

- Linpack
- Pallas MPI Benchmark PMB

- CPMD Si64

Linpack
No test Linpack feito en Xullo do 2002, o resultado obtido foi de 10,3 GFlops. O benchmark foi compilado cos
compiladores de Portland version 3.3-2, GM 1.5.1_Linux e MPICH-GM 1.2.1..7b.

Pallas MPI Benchmark PMB

A continuacién recollense os resultados obtidos dos benchmarks de Pallas GmbH. Estos benchmarks empreganse para
comparar o rendemendo das implementaciéns MPI. Os resultados obtivéronse en Xullo do 2002 coa versién GM

1.5.1 Linux e a version MPICH-GM 1.2.1..7b, baseada en MPICH 1.2.1. O benchmark PMB foi compilado cos
compiladores de Portland pgcc, version 3.3-2.

Rendemento Punto a Punto

O rendemento punto a punto midese entre dous procesos que execltanse en dous nodos distintos, e se expresan en
MBytes por segundo de ancho de banda por nodo (enviar + recibir), asi como a latencia nas comunicaciéns expresada en
microsegundos.

PMB PingPong

PingPong é o patrén clasico empregado para medir o arranque e o throughput dunha Gnica mensaxe enviada entre
dous nodos. A secuencia de comunicacion é un bucle MPI_Recv() seguida por un MPI_Send() (figura 1).

PMB PingPing

PingPing é un test de comunicacion en dous direcciéns concurrentes. Ao igual que PingPong, PingPing mide o arranque e
o throughput dunha Unica mensaxe enviada entre dous procesos, coa diferencia de que as mensaxes estan obstruidas

por mensaxes na direccion contraria. Para elo, dous procesos comunicanse (MPI_Isend/MPI_Recv/MPI_Wait) entre si, con
chamadas MPI_Isend enviadas simultdneamente (figura 1).

PMB SendRecv

Este test esta baseado na chamada MPI_Sendrecv(). Nél os procesos forma unha cadea de comunicacion periodica, na
gue cada proceso envia ao vecifio que se atopa a sUa dereita e receve do vecifio que se atopa a sla esquerda na
cadea (figura 2).

PMB Exchange

Neste test, 0 grupo de procesos tamén actlla coma unha cadea periddica, e cada proceso intercambia (exchanges)
datos cos seus vecifios dereito e esquerdo na cadea (figura 3).

Benchmarks colectivos
O rendemendo colectivo ou da interconexion do sistema no seu conxunto, midese entre todos ou un subconxunto dos
nodos do sistema. Os datos dos benchmarks colectivos amosan a latencia media nas comunicacions en microsegundos.

PMB Allreduce

Este é o benchmark da funcién MPI_Allreduce. Reduce vectores de nimeros en punto flotante de lonxitude L =
X/sizeof(float) desde cada proceso a un Unico vector e o distribue a todos os procesos. O tipo de datos MPI é

http://archivo.cesga.es - CESGA-Centro de Supercomputacion de Galicia 10 January, 2026, 23:07



MPI_FLOAT e a operacion MPI € MPI_SUM (figura 4).

PMB Reduce

Este é o0 benchmark da funcion MP1_Reduce. Reduce vectores de nimeros en punto flotante de lonxitude L =
X/sizeof(float) desde cada proceso a un Unico vector no proceso pai. O tipo de dato MPI é MPI_FLOAT e a operacion
MPI é MPI_SUM. O proceso pai da operacién cambia ciclicamente (figura 5).

PMB Reduce_scatter

Este é o0 benchmark da funcion MPI1_Reduce_scatter. Reduce vectores de nimeros en punto flotante de lonxitude L =
X/sizeof(float) nun Unico vector. O tipo de dato MPI € MPI_FLOAT e a operacién MPI é MPI_SUM. Na fase dispersa
(scatter), os valores de L dividense uniformemente entre todos os procesos (figura 6).

PMB Allgather

Este é o0 benchmark da funcion MPI_Allgather. Cada proceso envia X bytes e recibe o grupo dos X*(n°_procesos) bytes
(figura 7).

PMB Allgatherv

Este é o benchmark da funcion MPI_Allgatherv. Cada proceso envia X bytes e recibe o grupo dos X*(n°_procesos) bytes
(figura 8).

PMB Alltoall

Este é o benchmark da funcién MPI_Alltoall. Cada proceso envia e recibe X*(n°_procesos) bytes (X para cada proceso)
(figura 9).

PMB Broadcast

Este é o benchmark da funcion MPI_Bcast. Un proceso pai envia (broadcasts) X bytes a todos os outros procesos (figura
10).

PMB Barrier

Este é o benchmark da funcién MPI_Barrier(). Non se intercambia ningin dato (figura 11).

CPMD Si64

Para proba-lo BeoWulf cunha aplicacion real, compilouse o programa de dinamica molecular CPMD neste sistema
utilizando MPI. O compilador utilizado foi o de Portland e utilizaronse tres librerias diferentes de BLAS:

- As propias do compilador de Portlan (marcadas nas figuras como Pallas)

- As do proxecto Atlas

- As propias do fabricante (Intel)

Como entrada utilizouse un coxunto de 64 moléculas de Si sobre o cal fixose unha optimizacién da funcién de onda
(marcado como Si64 nas fuguras) e, nun segundo paso, un célculo ad initio MD (marcado como Si64md). Nas figuras
seguintes amdsasen os resultados obtidos tanto en tiempo consumido como en SpeedUp en funcié do ndmero de
procesadores utilizados.

Figura 12.- CPDM si64

Figura 13.- CPDM si64md

Figura 14.- CPDM si64 speedup
Figura 15.- CPDM si64md speedup

http://archivo.cesga.es - CESGA-Centro de Supercomputacion de Galicia 10 January, 2026, 23:07



