

Future Computer Needs in the Dense Linear Algebra Domain

Enrique S. Quintana-Ortí

Large-scale linear systems: Electromagnetism

 Radar cross-section problem (via BEM)

Solve A x = b
 dense A → n x n
 n = hundreds of
 thousands of boundary
 points (or panels)

Large-scale LLS: Estimation of Earth's gravity field

GRACE project

www.csr.utexas.edu/grace

• Solve $y = H x_0 + \epsilon$, dense $H \rightarrow m \times n$ m = 66.000 observations n = 26.000 parameters for a model of resolution 250km

Large-scale eigenvalue problems: Industrial processes

- Optimal cooling of steel profiles
- Solve

 $A^T X + X A - X S X + Q = 0,$ dense $A \rightarrow n x n$ n = 5.177 for a mesh width of $6.91 \cdot 10^{-3}$

- Dense linear algebra is at the bottom of the "food chain" for many scientific and engineering apps.
- Molecular dynamics simulations
- Fast acoustic scattering problems
- Dielectric polarization of nanostructures
- Magneto-hydrodynamics
- Macro-economics

Challenges for dense linear algebra

Future exascale platforms

- Performance scalability
- Architecture heterogeneity
- Power consumption
- Impact on methods and libraries for dense linear algebra operations...

Challenges for dense linear algebra

Future exascale platforms

- Performance scalability
- Architecture heterogeneity
- Power consumption
- Impact on methods and libraries for dense linear algebra operations...

Performance scalability

Performance scalability

- Libraries for dense linear algebra:
 - BLAS
 - Multi-threaded (MT)
 - LAPACK
 - Use of MT BLAS: Excessive synchronization points
 - ScaLAPACK, PLAPACK:
 - 1 MPI process per core is not optimal: combine with MTparallel approach

Performance scalability

Producto de matrices en 2 Intel Xeon QuadCore (8 cores)

Cholesky factorization

$$A = L * L^{T}$$

Key in the solution of s.p.d. linear systems

$$A \ x = b \equiv (LL^T)x = b$$
$$L \ y = b \Rightarrow y$$
$$L^T x = y \Rightarrow x$$

Cholesky factorization

Factor de Cholesky en 2 Intel Xeon QuadCore (8 cores)

• Why?

Excessive thread synchronization

```
for (k=0; k<nb; k++) {

Chol(A[k,k]); // A_{kk} = L_{kk} * L_{kk}^{T}

if (k<nb) {

Trsm(A[k,k], A[k+1,k]); // L_{k+1,k} = A_{k+1,k} * L_{kk}^{-T}

Syrk(A[k+1,k], A[k+1,k+1]); // A_{k+1,k+1} = A_{k+1,k+1}

// - L_{k+1,k} * L_{k+1,k}^{T}
```


• Why?

Exploit task-level parallelism dictated by data dep.

for (k=0; k<nb; k++){
 Chol(A[k,k]);
 for (i=k+1; i<nb; i++)
 Trsm(A[k,k], A[i,k]); ...</pre>

Dependencies among tasks define a tree

Run-time:

- Identifies/extracts TLP
- Schedules tasks to execution
- Maps tasks onto specific cores

Factor de Cholesky en 8 AMD Opteron DualCore (16 cores)

Challenges for dense linear algebra

Future exascale platforms

- Performance scalability
- Architecture heterogeneity
- Power consumption
- Impact on methods and libraries for dense linear algebra operations...

Architecture heterogeneity (CU)BLAS

sgemm: C:=C+A*B

Architecture heterogeneity (CU)BLAS

dgemm: C:=C+A*B

Architecture heterogeneity (CU)LAPACK

schol: A=L^T*L

Architecture heterogeneity

- Libraries for dense linear algebra:
 - Multiple address spaces without hardware coherence (as difficult as message-passing)
 - Scheduling on heterogeneous resources (also much harder)
 - Possibly, more than one accelerator (per node)
 - Take advantage of single precision speed-up: iterative refinement

Architecture heterogeneity

View as a...

Shared-memory multiprocessor + DSM

Architecture heterogeneity

Software Distributed-Shared Memory (DSM)

- Software: flexibility vs. efficiency
- Underlying distributed memory hidden from the users
- Reduce memory transfers using write-back, writeinvalidate,...
- Well-known approach, not too efficient as a middleware for general apps.
- Regularity of dense linear algebra operations makes a difference!

Architecture heterogeneity (CU)LAPACK for multi-GPU

schol: A=L^T*L 1200 2 Intel Xeon QuadCore E5440 NVIDIA Tesla C1060 (with transfer) 1 NVIDIA Tesla S1070 (with transfer)+BASIC 1 NVIDIA Tesla S1070 (with transfer)+2D 1000 1 NVIDIA Tesla S1070 (with transfer)+CACHE+WI,WT 1 NVIDIA Tesla S1070 (with transfer)+WB 800 GFLOPS 600 400 200 0 10000 20000 5000 15000 Ω

Problem size (n)

Challenges for dense linear algebra

Future exascale platforms

- Performance scalability
- Architecture heterogeneity
- Power consumption
- Impact on methods and libraries for dense linear algebra operations...

Power consumption Fuel efficiency

System	Тор500	#cores	Rmax (TFLOPS)	Green500	Power (KW)	MFLOPS/ W	W to EFLOPS? (MW)
Jaguar	1	224,162	1,759.0	56	6,950.6	253.1	3,951
JUGENE	5	294,912	825.5	19	2,268.0	364.0	2,747
FZJ QPACE	131	4,608	44.5	1	253.1	773.0	1,293

Most powerful reactor under construction in France Flamanville: 1,630 MWe

Power consumption

- Future exascale platforms
 - Current approach of "few" (10.000-100.000) and "thick" nodes may not scale
 - "Many thin" nodes (MPI parallelism)?

Power consumption

Power consumption Dense linear algebra

Need for energy-aware algorithms...

- Example*: solution of dense s.p.d. linear systems
 - Conjugate gradient (single precision) + iterative refinement
 - Cholesky factorization

*From "A new energy aware performance metric"; C. Bekas, A. Curioni; Comput. Sci. Res. Dev., 2010

Power consumption Dense linear algebra

 Execution time in sec. (and percentage of peak performance) for a system with 32,768 unknowns on IBM BG/P, with 4 threads per node

Solver	32 nodes	64 nodes	128 nodes
CG	16.2 (4.6)	8.1 (4.5)	4.2 (4.1)
Cholesky	51.1 (48.0)	31.3 (43.0)	20.3 (33.1)

Power consumption Dense linear algebra

 Power consumption in KJ for a system with 32,768 unknowns on 128 nodes of IBM BG/P, with 4 threads per node

Solver	Flops	Memory	Network	Total
CG	0.11	0.12	0.0	0.23
Cholesky	3.9	8.8	0.065	12.8

Challenges for dense linear algebra

Future exascale platforms

- Performance scalability
- Architecture heterogeneity
- Power consumption
- The "battle" will be played at the node level (TLP)
- Heterogeneity is great, but may greatly complicate programming
- Be power efficient or die...