

Computational problems in 3DEM

C.O.S. Sorzano

Biocomputing Unit, National Center of Biotechnology (CSIC), Spain INSTRUCT associated Image Processing Centre for Microscopy

Biological problem

Biological problem

Thickness range

Resolution range

In the microscope:

3D information is collapsed

In the microscope:

3D information is collapsed

2D information is "blurred"

In the microscope:

- 3D information is collapsed
- 2D information is "blurred"
- 2D information is corrupted by noise

Image Processing Packages: Xmipp

Documentation: http://xmipp.cnb.csic.es

Email: xmipp@cnb.csic.es

Computational challenges: High Performance Computing

High Performance Computing

Electron Tomography:

- Image size: 2048x2048 (coming 4096x4096)
- Number of images: 140
- Data size: $140 \times 2048 \times 2048 \times 8 = 4.37 \text{ GB}$
- Reconstruction size: 500 x 2048x2048 x 8 = 15.6 GB
- Acquisition rate: 6-12 tomograms/day

Computational needs:

- Alignment (6-12 hours)
- 3D reconstruction (12-24 hours)

High-Performance Computing: GPUs

Castaño-Díez, D. et al. J. Structural Biology, 2007, 157, 288-295

Table 1							
Comparison o	f different	running	times	of the	SIRT	algorithm	

Iterations	Dimensions	NVIDIA GeForce 6600 GT	Intel Pentium 4, 2.4 GHz	Approx. speed up factor (1)	NVIDIA QuadroFX 4500	Intel Xeon 3.4 GHz	Approx. speed up factor (2)
1	200×200	0:03	0:15	4.9	0:01	0:12	7.1
10	200×200	0:06	1:44	17.3	0:02	1:28	29.7
50	200×200	0:19	8:23	26.5	0:07	7:03	49.7
100	200×200	0:35	16:42	28.6	0:14	14:05	57.3
1	512×512	0:06	1:15	12.5	0:02	1:34	36
10	512×512	0:23	13:44	35.8	0:09	11:24	73
50	512×512	1:40	65:00	39	0:39	55:00	84
100	512×512	3:15	135:00	41.5	1:16	110:00	85
1	1024×1024	0:17	6:35	23.2	0:06	5:34	49
10	1024×1024	1:23	45:00	32.5	0:32	38:00	71
50	1024×1024	6:17	n/p	n/p	2:26	186:00	76
100	1024×1024	12:25	n/p	n/p	4:48	n/p	n/p
1	2048×2048	1:01	28:00	27.7	0:23	26:00	67
10	2048×2048	5:21	186:00	34.8	2:03	154:00	75
50	2048×2048	24:35	n/p	n/p	9:27	n/p	n/p
100	2048×2048	48:38	n/p	n/p	18:44	n/p	n/p

High-Performance Computing: Teraflop chips?

Overview Teraflops Research Chip

Intel's Teraflops Research Chip

Advancing multi-core technology into the tera-scale era.

Teraflops Research Chip

Future of HPC for Electron Tomography

	GPU	Multicore	Multicore + GPU
Memory requirements			
Deployment cost			
Development cost			
Execution time		The second second	

High Performance Computing

Single Particle Analysis

- Image size: 150x150
- Number of images: 100k (coming 1M)
- Data size: $100k \times 150 \times 150 \times 8 = 16.7 \text{ GB}$
- Reconstruction size: $150x150x150 \times 8 = 25MB$
- Acquistion rate: 1 week (peak 250k/day)

Computational needs:

- 2D Classification: 2 months
- 3D Alignment and Reconstruction: 2 weeks
- 3D Classification: 8 months

High-Performance Computing: Multiprocessor Cores

	Machine8					Machine 16						
1												
	Reconstruction	Speed-up	Conversion	Speed-up	Total	Speed-up	Reconstruction	Speed-up	Conversion	Speed-up	Total	Speed-up
$64 \times 64 \times 64$	$64 \times 64 \times 64$											
Sequential	9.89	_	0.58	_	10.46	_	25.34	_	1.40	_	26.74	_
2 threads	4.71	2.10	0.34	1.76	5.05	1.94	12.97	1.95	0.81	1.75	13.78	1.94
4 threads	2.70	3.66	0.20	2.95	2.90	3.37	7.07	3.58	1.28	1.11	8.35	3.21
8 threads	1.73	5.72	0.14	4.38	1.86	5.24	6.12	4.14	0.40	3.55	6.52	4.11
16 threads	-	_	_	_	-	-	5.62	4.51	0.29	4.88	5.91	4.53
128 × 128 ×	128											
Sequential	82.48	_	4.61	_	87.09	_	204.24	_	11.28	_	215.51	_
2 threads	40.13	2.06	2.63	1.81	42.76	1.94	103.74	1.97	5.98	1.89	109.71	1.97
4 threads	21.81	3.78	1.52	3.13	23.33	3.56	58.83	3.47	6.59	1.71	65.42	3.30
8 threads	11.68	7.06	0.92	5.17	12.60	6.60	44.30	4.61	2.73	4.13	47.03	4.58
16 threads	_	_	_	_	-	-	23.75	8.60	1.93	5.86	25.67	8.40
256 × 256 ×	256											
Sequential	647.44	_	37.02	_	684.46	_	1633.42	_	90.90	_	1724.31	_
2 threads	314.84	2.06	20.45	1.86	335.29	1.95	832.00	1.96	50.36	1.80	882.35	1.95
4 threads	163.97	3.95	12.14	3.13	176.11	3.72	470.89	3.47	55.07	1.65	525.96	3.28
8 threads	91.71	7.06	7.12	5.33	98.83	6.63	354.79	4.60	23.94	3.79	378.73	4.55
16 threads	_	_	_	_	_	_	194.50	8.40	13.19	6.88	207.70	8.30
$512 \times 512 \times 512$												
Sequential	5260.07	_	302.24	_	5562.30	_	13050.93	_	731.49	_	13782.42	_
2 threads	2552.30	2.06	163.55	1.87	2715.85	1.96	6540.15	1.97	395.92	1.88	7036.07	1.96
4 threads	1281.50	4.10	96.04	3.18	1377.54	3.87	3415.78	3.82	357.52	2.08	3773.30	3.65
8 threads	706.61	7.44	57.25	5.34	763.86	6.97	2535.67	5.15	163.00	4.56	2698.66	5.11
16 threads	_	_	_	_	_	_	1495.56	8.73	99.47	7.46	1595.03	8.64

High-Performance Computing: Parallel computing

HPC capabilities in the most common packages in cryoEM						
Package	Reference	Modality	Parallelized tasks	Implementation		
AUTO3DEM	Yan et al. (2007)	Single particles ¹	Angular determination; reconstruction	MPI		
BSOFT	Heymann and Belnap (2007)	Single particles	Reconstruction	Custom		
BSOFT	Heymann et al. (2008)	Tomography	Reconstruction; denoising; resolution estimation	Custom		
EMAN	Ludtke et al. (1999)	Single particles	Classification; angular determination; reconstruction; Helixhunter, foldhunter	Custom; MPI; OpenMP, pthreads		
FREALIGN	Grigorieff (2007)	Single particles	Angular determination	Custom		
IMAGIC	van Heel et al. (1996)	Single particles	Angular determination; reconstruction	MPI		
IMIRS	Liang et al. (2002)	Single particles ¹	Angular determination; reconstruction	OpenMP, MPI		
IMOD	Kremer et al. (1996)	Tomography	CTF correction; reconstruction; denoising; dual-axis tomogram combination	Custom		
PRIISM/IVE	Chen et al. (1996)	Tomography	Reconstruction; alignment of two tilt series	Custom, GPUs		
SPIDER	Frank et al. (1996)	Single particles	Angular determination; reconstruction; template matching (fitting)	OpenMP, MPI, custom		
SPIDER	Frank et al. (1996)	Tomography	Reconstruction; template matching	OpenMP, custom		
UCSF TOMOGRAPHY	Zheng et al. (2007)	Tomography	Reconstruction	MPI		
XMIPP	Marabini et al. (1996)	Single particles	Classification & alignment via maximum-likelihood; angular determination; reconstruction	MPI, pthreads		

High-Performance Computing: Cloud computing

Location independency, resource allocation, data transfers

Future of HPC for Single Particles

	Local cluster	Cloud computing
Memory requirements		
Deployment cost		
Development cost		
Access cost		G
Access time		

Summary

- 3D Electron Microscopy is a very intensive computational task demanding HPC
- Most important factor:
 - Electron tomography: low execution time
 - Single particles: resource allocation
- Different technologies have been explored
- Winning technology:
 - Electron Tomography: Multicore+GPU
 - Single particles: Local clusters or cloud computing
- More efficient development is needed
- Computational cost will have to be explicitly considered in Structural studies