

Grid Engine experience in *Finis Terrae*, large Itanium cluster supercomputer

Pablo Rey Mayo Systems Technician, Galicia Supercomputing Centre (CESGA)

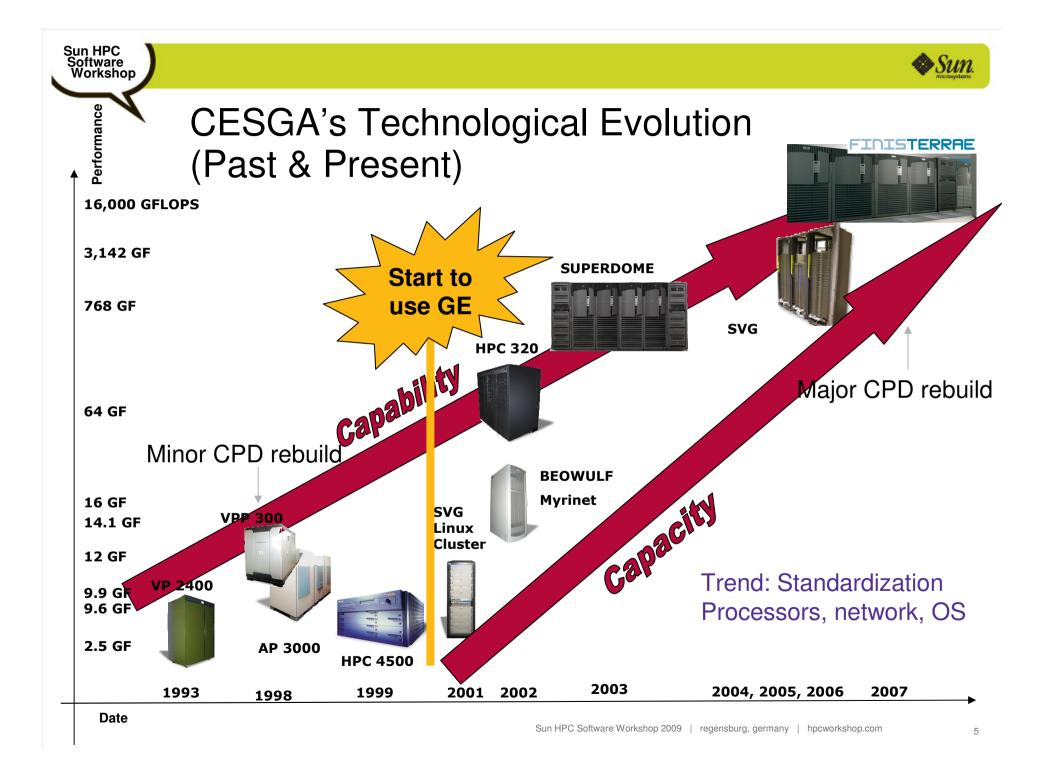
Agenda

Sun HPC Software Workshop

> Introducing CESGA Finis Terrae Architecture Grid Engine Experience in Finis Terrae Grid Engine Utilities Grid Engine and gLite Middleware

Past, Present, Future

Sun HPC Software Workshop


Users: Three main Galician Universities and Spanish Research Council, Regional weather forecast service

Services: High performance computing, storage and communication resources (RedIris PoP)

Promote new information and communication technologies (HPC & Grid projects)

Future: Centre of Excellence in Computational Science – C²SRC 141 research staff 75 MM€ (31% building, 23% HPC)

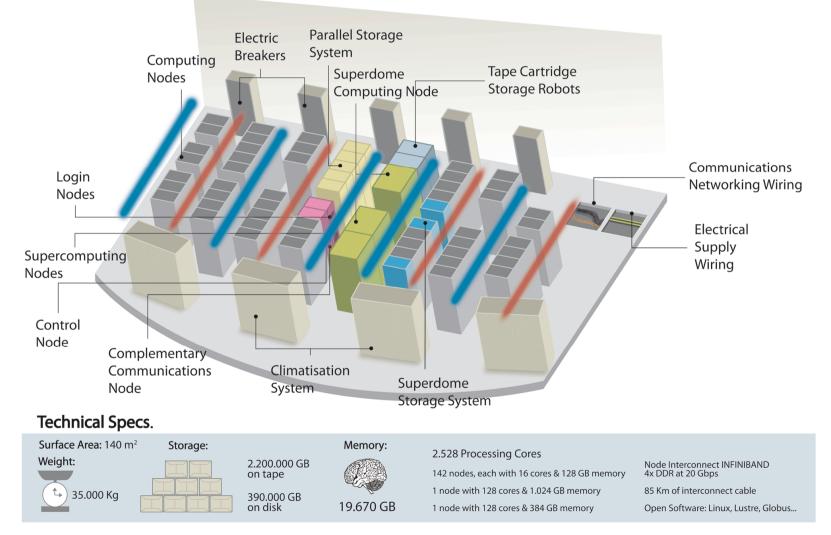
TERRAE

EXPANDING THE FRONTIERS OF KNOWLEDGE

Finis Terrae Supercomputer

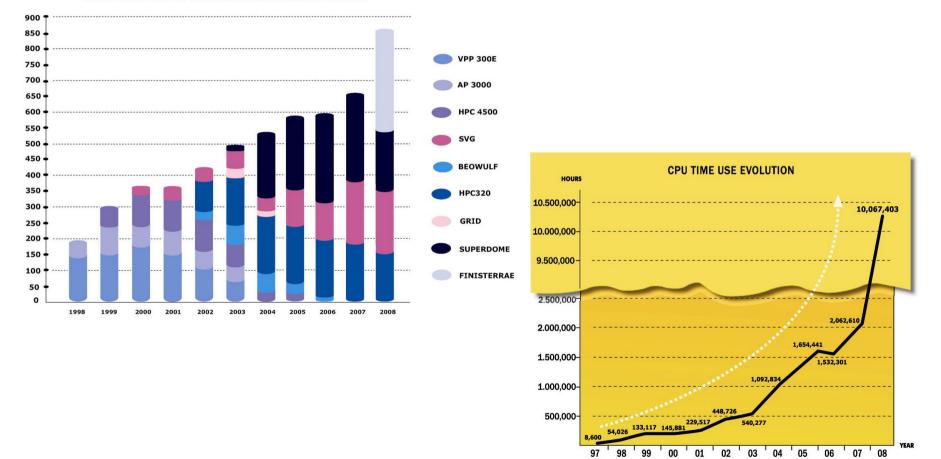
Sun HPC Software Workshop

Spanish National Unique Scientific & Technological Infrastructure


More than: 16,000 GFLOPS 2,580 Itanium2 CPUs

19,640 GB Memory

OPEN SOURCE


Finis Terrae SMP NUMA Cluster

Demand of computing resources at CESGA

USER ACCOUNT EVOLUTION PER SYSTEM PER YEAR

Grid Engine experience in Finis Terrae

Tight HP-MPI Integration

The integration has been tested both with GE 6.1 and 6.2

- GE 6.1 uses rsh. Limitations:
 - 256 connections limit, but one connection against each node/job.
 - No prompt in the session: not aware of any problem in batch jobs.
- GE 6.2 uses an internal communication protocol. Limitations:
 - No prompt.
 - No X11 forwarding.

More info in:

http://wiki.gridengine.info/wiki/index.php/Tight-HP-MPI-Integration-Notes

Tight HP-MPI Integration

Sun HPC Software Workshop

Set up the Grid Engine Parallel Environment (PE):

pe name mpi slots 9999 user lists NONE xuser lists NONE start_proc_args <YOUR_SGE_ROOT>/mpi/startmpi.sh -catch_rsh \$pe hostfile stop_proc_args <YOUR_SGE_ROOT>/mpi/stopmpi.sh allocation rule \$fill up control slaves TRUE job_is_first_task FALSE urgency_slots min accounting summary FALSE Modify the starter method and pe list options of the queue you want to use starter_method <YOUR_PATH>/job_starter.sh pe_list mpi mpi_rr mpi_1p mpi_2p mpi_4p mpi_8p mpi_16p

Set up the hp-mpi environment: export MPI_REMSH=\$TMPDIR/rsh

qrsh and memory consumption in Itanium

Sun HPC Software Workshop

qrsh in GE6.2 adds builtin communication (IJS) with threads.

Memory consumption is about *2 times the stack limit*. IF no stack limit, uses 32MB

Number of threads expanded by each qrsh depend of the shell. If shell NOT recognised as "sh", extra thread consume 30MB.

if stack limit is 256MB each qrsh consumes >500MB of virtual memory ⇒ jobs killed if exceed memory limit.
 Optimal memory consumption in Itanium a stack of 1MB.
 Set this limit inside the rsh script before qrsh is launched.

Tight Intel-MPI Integration: Extra steps

Sun HPC Software Workshop

Create independent rings by adding the variable to avoid processes interfering in the allexit step:

export I_MPI_JOB_CONTEXT="\$JOB_ID-\$SGE_TASK_ID" If Intel-MPI version is previous to 3.2, rsh script is not able to detect the python version.

Modify mpirun to use by default RSH instead of SSH

other_mpdboot_opt="\$other_mpdboot_opt --rsh=\$TMPDIR/rsh"

Disabling direct SSH connection to the nodes

To accomplish this the following steps are required:

- MPI Tight Integration.
- Qlogin: configure it to run over qrsh following also the *tight integration* way.

qlogin_command builtin
qlogin_daemon builtin
rlogin_daemon builtin
rsh_daemon builtin
rsh_command builtin
rlogin_command builtin

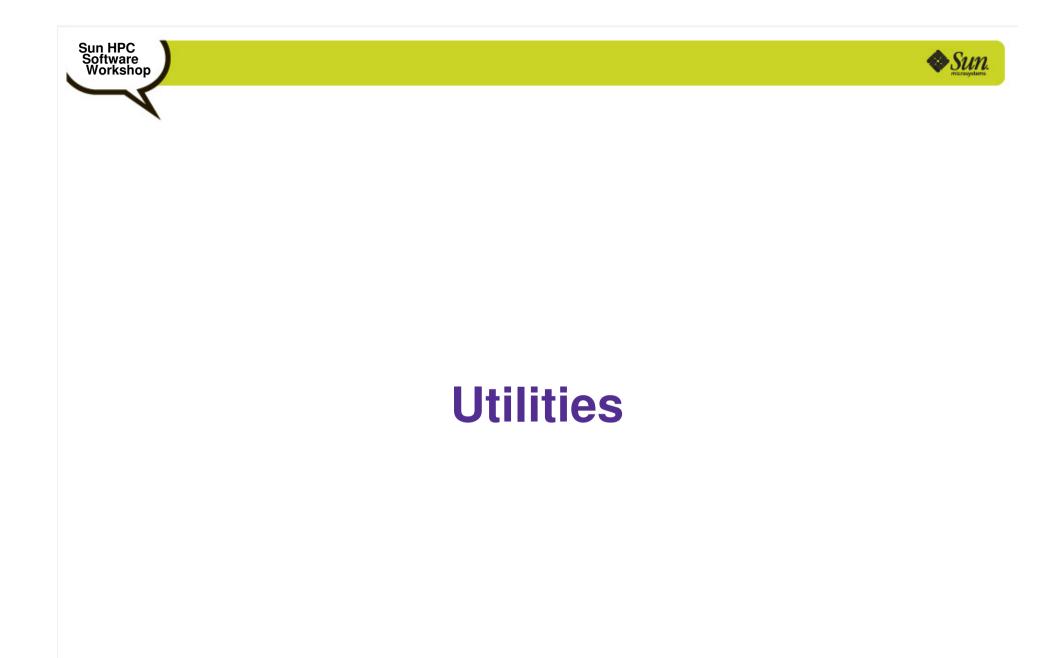
• Re-configuration of ssh to allow only certain administrative users to connect (option *AllowUsers*).

In this way all processes are correctly accounted in the accounting file. To facilitate interactive use of the nodes a wrapper was created. Solved the X11 forwarding limitation in GE 6.2 More info in:

http://wiki.gridengine.info/wiki/index.php/Disabling direct ssh connection to the nodes

Checkpointing in GE

Berkeley Lab Checkpoint/Restart (BLCR) Integrated with GridEngine (GE)


Set a ckpt_list in the queue configuration

Configure a checkpoint environment:

[sdiaz@svqd ~]\$ qconf -sckpt BLCR ckpt name BLCR interface application-level ckpt_command_\$BLCR_PATH/bin/cr_checkpoint -f \$ckpt_dir/\$ckptfile --stop -T \$process2 migr_command \$BLCR_PATH/bin/cr_restart \$ckptfile restart command none \$BLCR_PAT/bin/clean.sh \$job_id \$ckpt_dir clean command ckpt_dir \$SGE_O_WORKDIR signal none when xsmr

Checkpointing with gaussian.

Future: Checkpointing with parallel jobs

qsub wrapper

Instead of original qsub, a wrapper let us check jobs fulfil some basic requirements before queued:

Check user has given an estimation of all the required resources (*num_proc*, *s_rt*, *s_vmem* and *h_fsize*) and that them fulfil the default limits.

Distribute jobs to the corresponding queues (cluster partitioning) Verify if the job can run in the queues before submission.

Let us to define environment variables necessary to some application (e.g. *OMP_NUM_THREADS*). Support special resources requests (per user limit).

Similar to Job Submission Verifiers (JSVs)?.

qsub wrapper: default limits

Maximum number of processors (*num proc*slots*): 160 Maximum value of num proc: 16 Maximum number of slots:160 Execution time (s rt): Sequential jobs: Until 1000 hours Parallel jobs: From 2 to 16 processors: 200 hours From 17 to 32 processors: 100 hours From 33 to 64 processors: 50 hours From 65 to 128 processors: 30 hours From 129 to 160 processors: 20 hours More than 161 processors: 10 hours Memory: Per core: 8GB Per node: 112 GB

H_fsize: 500GB

qsub wrapper: queue distribution

Number of cores	Small queue	Medium queue	Large queue	
≤ 4	\checkmark	≤ 1 hour	≤ 1 hour	
< 16	≤ 1 hour	\checkmark	≤ 1 hour	
≥ 16	≤ 1 hour	\checkmark	\checkmark	

queue	Interactive	Small	Medium	Large	meteo
# nodes	2	14	62	62	2

Management of special user requirements

Default limits are not enough. Users can request access to extra resources (memory, CPU time, number of processors, space on scratch disk, ...).

The special resources requests are stored in a database and then exported to a XML file The XML file is processed by the qsub wrapper.

<users></users>
<user login="prey"></user>
<application id_sol="71"></application>
<start>2009-06-01</start>
<end>2010-05-31</end>
<priority>1</priority>
<s_rt>1440</s_rt>
<s_vmem_total>0</s_vmem_total>
<h_fsize>0</h_fsize>
<n_proc_total>256</n_proc_total>
<num_proc>0</num_proc>
<slots_mpi>0</slots_mpi>
<s_vmem_core>0</s_vmem_core>
<exclusivity>0</exclusivity>
• • • • • •
<users></users>

Job prioritization

Some kind of jobs (special user requirements, challenges, agreements, ...) need to be prioritized. The *qsub* wrapper don't prioritize jobs so we have to do it

after they are submitted:

- Change the number of override tickets (*qalter –ot*) and the priority (*qalter –p*) for the specified users.
- In very special cases a reservation (*qalter R y*) is also done.
- Change the hard requested queues.

Job prioritization: special case

Jobs of the *regional weather forecast service* cannot wait for free slots \Rightarrow Move into execution its pending jobs.

Process:

- Check if there are jobs in error state and clears this state if it is necessary.
- Hold all the pending jobs except its jobs.
- Change the priority for this user.
- Restrict access to the nodes while we are increasing complex_values like num_proc or memory to avoid other jobs entering in the selected nodes.
- Restore the complex_values of the selected nodes.
- Remove the hold state of the pending jobs

Should be prioritized some pending job?

- Daily email with information about pending jobs (resource request list, time since it was submitted, predecessor job, ...).
- A job will be prioritized if:

Time since it was submitted is greater than the requested time. Time since it was submitted is greater than a maximum waiting time limit (100 hours).

The script can send this information by email, and/or save it in a file in tab or CSV format. It can also save a summary by user and queue (historical information). The script is based in the XML output of the *qstat* command (*qstat -u "*" -s p -r -xml*).

Are nodes overloaded?

Nodes are shared between different jobs (big SMP nodes, specially superdome)

- Users not always use properly the number of slots required by the jobs. So we can have nodes **overloaded** or **underloaded**.
- For each node it is compared the load with the number of available processors and with the number of processors required by all the jobs running on it.
- The script is based in the XML output of the *qstat* command (*qstat -u "*" -s r -r -f -ne -xml -q *@NODE*) for each host (*qhost*).

Application integration with GE: Gaussian

Gaussian is one of the most common application used incorrectly \Rightarrow Created a wrapper to avoid it.

The wrapper let us:

- Control how it is used:
 - Gaussian is used only under the queue system.
 - Users don't try to use MPI environment
 - The queue system requirements are accordingly to Gaussian input
- Facilitate the use:
 - Not necessary to set all the requirements in the Gaussian input

When will be free the node X?

Sometimes we need to know when a node will be free (maintenance, tests, ...).

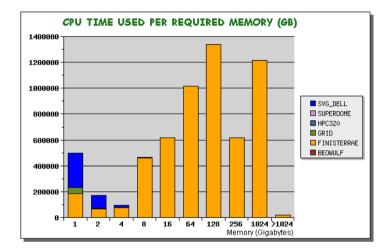
Using the list of jobs running in the node and the required s_rt limit for each job we can obtain the expected end time of all the jobs.

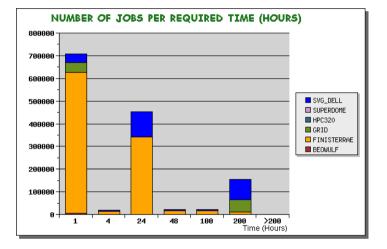
node	jobid	user	star	t time	s_rt	end time	
	1702180 1704961			09 09:02:01 09 11:48:16	716400 684000		
 sdd002	1694756	uviqfjhr	08/26/20	09 21:08:39	720000	2009-09-04 05:08:39	
 sdd003	1704957	uviqoarl	08/31/20	09 11:46:07	684000	2009-09-08 09:46:07	-

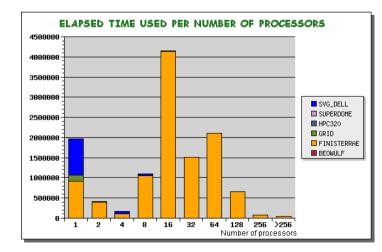
JOBS RUNNING IN NODES: sdd001 sdd002 sdd003

CESGA

GE integration in Ganglia


Finisterrae Job 1699054 Detail


August 31, 2009, 1:03 pm Back to Job Queue



Management of accounting information

Grid Engine in the gLite middleware

GE JobManager maintainers and developers.

GE certification testbed.

GE stress tests:

https://twiki.cern.ch/twiki/bin/view/LCG/SGE_Stress

We also performed stress tests in Finis Terrae supercomputer to check GE behaviour in a big cluster.

Documentation:

GE Cookbook (https://edms.cern.ch/document/858737/1.3)

End-user support for GE to the EGEE community. More info in:

https://twiki.cern.ch/twiki/bin/view/LCG/GenericInstallGu ide310#The SGE batch system

Grid Engine experience in Finis Terrae, large Itanium cluster supercomputer.

Pablo Rey Mayo prey@cesga.es. www.cesga.es