

NECESIDADES DE SUPERCOMPUTACIÓN EN LAS EMPRESAS ESPAÑOLAS

Andrés Gómez
Centro de Supercomputación de Galicia (CESGA)

agomez@cesga.es

Índice

- What is CESGA
- What is supercomputing
- Enterprise Supercomputing Uses
- Supercomputing and Enterprises

WHAT IS CESGA?

WHERE IS CESGA?

ESTABLISHED IN 1993 IN SANTIAGO DE COMPOSTELA (SPAIN)

PARTNERS

Board of Trustees

Regional Government of Galicia

National Research Council of Spain

MISSION STATEMENT

To provide high performance computing and advanced communications resources and services to the scientific community of Galicia and to the Spanish National Research Council (CSIC), as well as, to institutions and **enterprises** with R&D activity.

To promote high quality research in Computational Science in close collaboration with the research community from Galicia as well as from other regions or countries all over the world; contributing in this way to the advancement of science, to transfer technology to industry and administrations, and as consequence, to the welfare of society as a whole.

COMPUTATIONAL SCIENCE

Computational Science is the field of study concerned with constructing mathematical models and numerical solution techniques using computers to analyze and solve scientific, social scientific and engineering problems.

(Source: Wikipedia)

CESGA's COMMUNITY OF USERS

- > GALICIAN UNIVERSITIES
- GALICIAN REGIONAL GOVERNMENT RESEARCH CENTRES
- > SPANISH NATIONAL RESEARCH COUNCIL (CSIC) CENTRES
- > OTHER PUBLIC OR PRIVATE ORGANIZATIONS
 - □ Hospital R&D Departments
 - Industries R&D Departments
 - ☐ Technological & Research Centres
 - Other Universities worldwide
 - Non-profit R&D organizations

SERVICES

- HPC, HTC & GRID Computing
- User Data Storage
- Training
- Advanced Communications Network
- Video streaming broadcast & on-demand
- Remote Learning & Collaboration Room Network
- e-Learning & Collaboration Tools
- GIS (Geographical Information Systems)
- e-Business Innovation Consulting and Tech. transfer.
- R&D&I Project management

TECHNOLOGICAL EVOLUTION

1993 VP 2400

2,5 GFLOPS

1998

VPP 300

14,1 GFLOPS 12 GFLOPS

1999

HPC 4500

STORAGETEK

9,6 GFLOPS 51 TERABYTES

2001 SVG

9,9 GFLOPS

2002 HPC 320

64 GFLOPS 16 GFLOPS

2003

SUPERDOME

768 GFLOPS

2004, 2005, 2006

SVG

3,142 GFLOPS

2007-8 FINIS TERRAE

16,000 GFLOPS

Installation Year	1993	1998	1999	2001	2002	2003	2004	2005	2006	2007
Capacity				SVG			SVG	SVG	2006	
Capability	VP2400	VPP300E AP3000	HPC4500		HPC320	SUPERDOME				FINIS TERRAE

Finis Terrae

Fuente: El Correo Gallego

CESGA'S PEAK PERFORMANCE EVOLUTION

HOW REQUEST HPC, HTC, STORAGE SERVICES (I)

• Galician University, CSIC or Public Regional Center

- It is FREE, no FEE Except for Special Requirements
- Fill Form
- Other Public Organization

- Agreement (It is <u>NOT</u> free)
- Public calls (from Jan. 2009)

HOW REQUEST HPC, HTC, STORAGE SERVICES (II)

Private Organizations & Companies

- ONLY for R&D (maybe &I)
- Small FEE (less 2€/CPU-hour)
- Soft Licenses NOT included
- Contact us for Budget
- Public calls (from Jan. 2009)
- Independent Researcher
 - Contact us
 - Public calls (from Jan. 2009)

WHAT IS SUPERCOMPUTING?

SUPERCOMPUTER

- A supercomputer is a computer that is at the frontline of current processing capacity, particularly speed of calculation.
- Now, mainly aggregate off-the-shell computers linked with high performance networks.

SUPERCOMPUTING

- Capability computing: solve a <u>single</u> large problem in the shortest amount of time.
- Capacity computing: solve large problems or many small problems.
- Finis Terrae: Designed as a mix capacitycapability

TECHNICAL COMPUTING

- HPC: High Performance Computing is the use of parallel processing for running advanced application programs <u>efficiently</u>, reliably and <u>quickly</u>.
- HPC: High Productivity Computing. The goal is to decrease the <u>time-to-solution</u>, which means <u>decreasing</u> both the <u>execution time</u> and <u>development time</u> of an application on a particular system.
- HTC: High Throughput Computing. The use many computing resources over long periods of time to accomplish a computational task. Many jobs can be completed over a long period of time.

TECHNICAL COMPUTING

- FLOPS: FLoating point Operations Per Second
- Giga FLOPS: $10^9 = 1.000.000.000$
- TFLOPS: 10¹²= 1.000.000.000.000
- PFLOPS: 10¹⁵=1.000.000.000.000.000

- EFLOPS: 10¹⁸=1.000.000.000.000.000
- ZFLOPS: 10²¹=1.000.000.000.000.000.000.000

TOP 1:Roadrunner

Flops)

1 PERSON x 1 YEAR x 1 FLOP/s = <u>31.536.000 OPS</u>

> 1.45 PFLOP =

1 PERSON 45.979.198 YEARS

TOP500

TOP 500 EVOLUTION

ARCHITECTI IRES

EVOLUTION

Improvements in Algorithms Relative to Moore's Law

TOP 500 (2008) SPAIN

Countries / Systems November 2008

•6 Supercomputers

•153201 GFLOPs

TOP SPANISH SUPERCOMPUTERS

			Cores	Rmax	Rpeak		
40	BSC	BladeCenter JS21 Cluster, PPC 970, 2.3 GHz, Myrinet	10240	63830	94208	68%	Academic
131	Research Institution	Cluster Dietform 2000 DL 460a	2016	22402	20044-4	78%	Academic
162	Institution (S1)	GigEthernet				F	Industry
335	CeSViMa - BSC	BladeCenter JS20 Cluster, PPC 970, 2.2 GHz, Myrinet	2744	15955,2	24147,2	66%	Academic
376	Bank (S1)	Cluster Platform 3000 BL460c,	3040	15212,4	28332,8	54%	Industry
427	CESGA	Integrity rx5670 Cluster Itanium2 1 6GHz	2528	14010	16179	87%	Academic

SUPERCOMPUTING ENTERPRISE USES

APPLICATION AREA TOP500

- Not Specified (24%)
- Research (13%)
- •Finance (11.2%)
- Geophysics (9.8%)
- Semiconductor (4.8%)

Application Area / Systems November 2008

APPLICATION AREA EVOLUTION

MODELLING & SIMULATION

HPC Applications and Algorithms

The virtual airplane

$C^2A^2S^2E$

Center for Computer Applications in AeroSpace Science and Engineering

Source: PRACE project

Source: PRACE project

HPC and the finance sector

financial modelling

risk simulation

Insurance: simulating a flooding, a taifun, an eruption

Source: PRACE project

- **≻**Weather, Climatology, Earth Science
- >Astrophysics, Elementary particle physics, Plasma physics
- ➤ Material Science, Chemistry, Nanoscience
- **≻Life Science**
- **Engineering**

Source: HET project . http://www.hpcineuropetaskforce.eu/

HET – Scientific Case Engineering

Complete Launcher Simulation for Next Launcher Generation

Internal combustion engine

Complete Helicopter Simulation for Next Generation Rotorcraft

Source: HET project . Jean-Yves Berthou, et. al.

http://www.irisa.fr/ORAP/Forums/GenciOrap/PresentationsGenciOrap/JYBerthouEDF.pdf

respuesta digital

"ELECTROMAGNETIC COMPATIBILITY"

Fig. 1 Induiced currents in an Airbus A380 for an axial incidence of 1,2 GHz, using more tahn 30 million unknowns.

RADIOTHERAPY TREATMENT VALIDATION (e-IMRT)

50

60 70 80

12:00:00 09:36:00 07:12:00 04:48:00 02:24:00 00:00:00

10 20

30 40

respuesta digital

Semana Internacional de la Computación

SUPERCOMPUTING & ENTERPRISES

Base: All. Source: http://simula.cesga.es

Base: ALL companies. Source: http://simula.cesga.es

Base: Companies using Numerical Simulation

Base: Empresas que utilizan Simulación Numérica internamente

Base: Empresas que utilizan Simulación Numérica internamente

NAVAL (2008)

•NEEDS:

- **≻90% Internally**
- **▶**10% Subcontracting of full process.
- >Hydrodynamic, turbines or ships.

- Confidentiality
- **>**Licenses
- > Data movement

WIND ENERGY (2008)

•NEEDS:

- >Structures
- **≻CFDs**
- **≻**More accuracy

- Confidentiality
- **>**Licenses
- > Data movement

FINANCES (2008)

•NEEDS:

- **►NONE.** Internal computing
- **≻Data Mining**
- **≻**Scoring
- >Fraud
- **≻**Rating

- **Confidentiality**
- **>**Licenses
- >Just-in-time. No Queues.
- >Data movement

AUTOMOBILE (2008)

•NEEDS:

- **≻Only for R&D**
- **≻CFD**

- **Confidentiality**
- **>**Licenses
- > Data movement

AERONAUTIC (2008)

•NEEDS:

- > ELECTROMAGNETISM
- >CFD
- > SOUND
- >STRUCTURAL
- >FLIGHT PHYSICS

•BARRIERS:

Not identified

SUMMARY (2008)

•NEEDS:

- **ELECTROMAGNETISM**
- **≻CFD**
- >ACOUSTICAL PHYSICS
- >STRUCTURAL
- >PHYSICS
- **FINANCE**
- > NANOTECHNOLOGY

- **>LICENSES**
- >DATA MOVEMENT
- **CONFIDENTIALITY**
- **QUEUE TIME**
- **EASY-TO-USE**

THE SOFTWARE LICENSE PROBLEM

Commercial Licenses

Solutions

Other

- It is expensive for R&D
- Allow limited innovation
- OK, Obligation in Innovation
- We can use your license (if contracted allowed) or
- Rent a new license (likely)
- USE OPEN SOFTWARE in R&D

OPEN SOFTWARE BENEFITS

- Unlimited number of licenses
- Allows faster inclusion of new methods

- Optimization
- Solvers
- Base libraries (BLAS, FFTW,etc)
- •
- Localize the knowledge
- Allows the production of new soft products easily
- Faster response to new CPU architectures
- As good as commercial software

OPEN SOFTWARE INITIATIVE

Joint project of

- CESGA
- Applied Math Departments (USC, UDC, UVIGO)
- Analyze Open Software for CAD/CAE (i.e. CAELINUX)
- We have selected:

- SALOME (CAD, PRE-POST)
- CODE-ASTER (Thermo-Mechanic)
- ELMER (Multi-physics)

OPEN SOFTWARE INITIATIVE

Test applications for:

Produce Distribution with:

- Software
- Manuals
- Tutorials

CONCLUSIONS

CONCLUSIONS

- Reduced usage of supercomputers by enterprises (8% INCITE)
- Usually big companies
- Sectors: Energy, Finance, Aeronautic, Automobile
- Main barriers: licenses, confidentiality, data movement
- Technical computing is the starting point
- > It is a must for the future

MORE INFO

Simulation - Based Engineering Science

Revoluti<mark>onizing Engineering</mark> Science through Simulation May 2006

Report of the National Science Foundation Blue Ribbon Panel on Simulation-Based Engineering Science

HET

European High Performance Computing Initiative

The Scientific Case

for a

European Super Computing Infrastructure

Petascale Computing in Europe

THANK YOU

FOR YOUR ATTENTION

ANDRÉS GÓMEZ TATO

agomez@cesga.es

http://www.cesga.es

