HP-CAST 12

ESTABLISHED IN 1993 IN SANTIAGO DE COMPOSTELA (SPAIN)

To provide high performance computing and communication resources and services to the scientific community of Galicia and to the National Research Council (CSIC), as well as, to institutions and enterprises with R&D activity.

To promote the use of new information and communication technologies applied to research within the scientific community of Galicia.

- Galician Universities
- Galician Regional Government Research Centres
- Spanish National Research Council (CSIC) Centres
- Other public or private organizations worldwide
 - Hospital R&D Departments
 - Industries R&D Departments
 - Technological & Research Centres
 - Other Universities worldwide
 - Non-profit R&D organizations

- HPC, HTC & GRID Computing
- User Data Storage
- Advanced Communications Network
- e-Learning & Collaboration Infrastructures
- GIS (Geographical Information Systems)
- Transfer to the industry and e-Business Innovation
 Support

New HPC Supercomputer 2007

More than: 16,000 GFLOPS 2,580 CPUs 19,000 GB Memory

InfiniBand network SuSE Linux

Ranked 100th in the Top500 list of November 2007

Finis Terrae (2007)

Supercomputing Nodes:

147 cc-NUMA Nodes with Itanium CPUs connected through a high performance InfiniBand network (20 Gbps)

☑ 1 node: 128 cores, 1024 GB memory

■ 2 nodes: 64 cores, 128+256 GB memory

■ 142 nodes: 16 cores, 128 GB memory

■ 2 testing nodes: 4 cores, 4 GB memory

Parallel Filesystem HP-SFS:

- ☑ 20 Nodes (2x Dual-core Intel Xeon 5160 CPUs)
- **図 864 Hard Disks**
- **図 210 TB**
- **Based on Lustre** ■
- ☑ Accessed through the InfiniBand network

Finis Terrae (2007)

Source: Intel

HP Integrity RX 7640:

- 16 Cores
- 2 Cells
- 1 InfiniBand HCA

HP Integrity RX 7640:

- 16 Cores
- 2 Cells
- 1 InfiniBand HCA
 - It is not only a bottleneck (it is placed on one cell, what about the other one?)
 - In Nehalem/Opteron machines the problem is quite similar (there is no cells, but they are NUMA machines with I/O interfaces associated to one/two processors)

Point to point:

- Roughly 20% in average
- Up to 30%

Collectives (All to all):

- Roughly 3% in average
- Up to 15% (With HP-MPI. With Intel MPI unstable -but consistent- measures)

Systems made of:

- 64? (RX-like) 512? (Superdome-like) cores
- 2? 16? cells
- 1 InfiniBand HCA?
 - How would it perform in a MPI_Alltoall operation?
 - **⊙** The scenario is quite similar in the x86-64 world.

Current setups:

- Noticiable differences (not HUGE, but noticeable)
- Collective operations are less affected
 - The time spended due to the algorithm complexity and intranode communications hides the problem
- Users can benefit from carefully planned affinity (specially SFS users)

Future setups:

- The problem might become:
 - Bigger (more cores accessing non-local HCA or an HCA accessing more non-local data -RDMA-)
 - Widespreaded (all x86-64 systems will be NUMA)

Solution:

- Add hardware (HCAs)
 - **⊙** But it is expensive. Does it compensate?
 - And we/runtime/application can not choose the HCA to be used
 - What do we do now?

Solution:

- Add hardware (HCAs)
 - But it is expensive. Does it compensate?
 - And we/runtime/application can not choose the HCA to be used
 - What do we do now?
 - It is necessary to develop some mechanisms to allow the software stack (driver "routing"?) to choose the "nearest" HCA

Thank you!

dalvarez@cesga.es

