# Adapting ROMS to execute on GRID using a hybrid parallelization model

Carmen Cotelo Queijo, Andrés Gómez Tato and Ignacio López Cabido

Supercomputing Center of Galicia – CESGA

José Manuel Cotos Yañez

University of Santiago de Compostela

Spanish e-science
ADVCOMP 2008 September 29 - October 4, Valencia











### RETELAB

A Virtual Laboratory for the National Network of Oceanographic Remote Sensing (RETEMAR).

RETELAB is a research project funded by: Spanish Education and Science Ministry (National Plan 2004-07: R&D Projects)

**URL:** http//www.retelab.org













### **RETELAB Partners**













# Keys Issues

Oceanographic research community has strong requirements for storage and satellite images processing and also for numeric simulation.

### **Data storage:**

More data at a higher resolution every day.

Large amount of raw data.

Access to distributed data sets

#### **Data processing:**

Data analysis is tedious.

Ocean study is an interdisciplinary task.

Heterogeneous data processing (it depends on the research group).

#### **Simulation:**

Currents and other oceanographic variables forecast.













### Virtual laboratory

Grid technology enables oceanographic researchers to run algorithms that require high computational power and create a collaborative framework between centres, users, models and distributed data.

#### **Main requirements:**

Scientific applications used in ocean study.

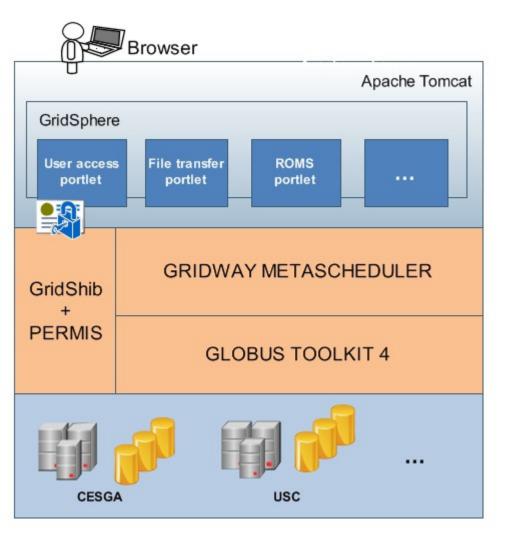
Management of security covering researchers access.

Distributed storage capacity for data exchange and management.

Processing capacity needed for data processing.

Visualisation of processed/stored data.












### RETELAB Architecture



#### Web portal:

Developed using Java portlets (based on GridSphere Portal Framework)

Role Base Access Control using X.509 attribute certificates

#### **GRID-enable workload management:**

GridWay metascheduler

Allocates the best resources available and allows the execution of jobs.

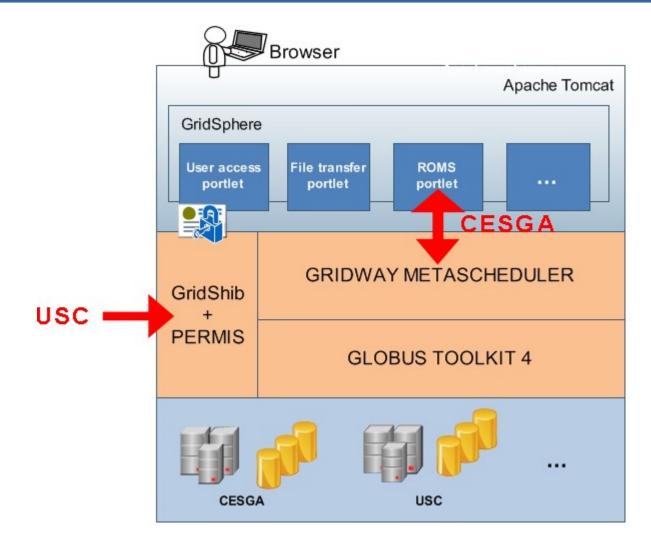
Supports Job Submission Description Language (JSDL) and DRMAA OGF standard

#### **Grid middleware:**

Globus Toolkit 4.

Enables the sharing of many different types of resources.









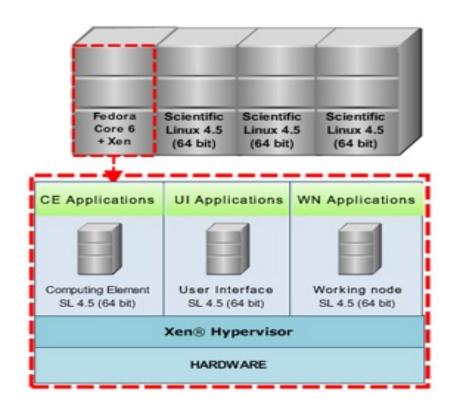



### RETELAB Architecture














### Computational infrastructure

Initial pilot is based on a cluster composed of 4 HP blade systems with Intel quad-core CPUs. One of the systems runs 3 Xen virtual machines.













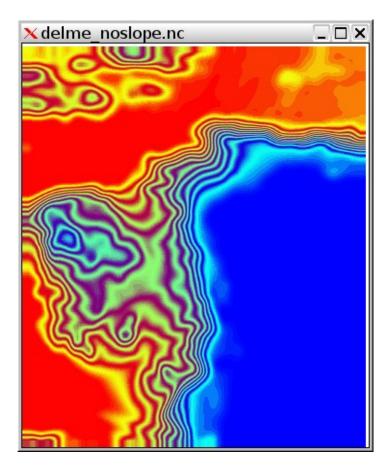
### Demonstration application: ROMS

The Regional Ocean Modeling System (ROMS) is a a new-generation model for oceanic circulation:

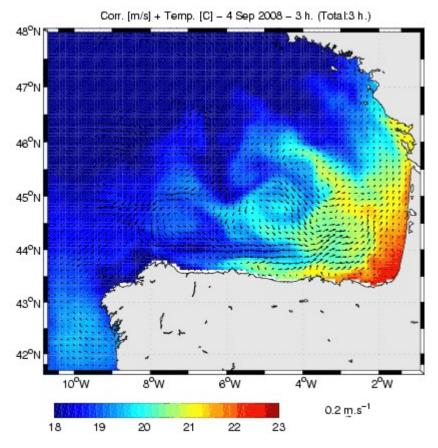
- Specially designed to simulate regional ocean systems accurately.
- Can be run in either serial or parallel computers using MPI and OpenMP programming models but <u>not concurrently</u>.
- Extensive pre and post-processing software for data preparation,
   analysis, plotting and visualization.

ROMS: http://www.myroms.org










### Demonstration application: ROMS



Source: USC-TELSIG















RETELAB architecture and the domain decomposition of ROMS MPI version will allow executing it in a hybrid model (OpenMP+MPI).

#### Tasks to execute ROMS using a hybrid model:

- Adapting ROMS code in order to use OpenMP and MPI simultaneously.
- Defining a new JSDL extension including multilevel parallelization features.
- Developing a specialized portlet able to translate job requirements into a JSDL document.
- Adapting Gridway components in order to use the new JSDL extension.











#### JSDL-HTC example for NAS-MZ BT Benchmark

#### **Defining a new JSDL extension:**

- JSDL is the Open Grid Forum standard.
- There are standard and non-standard JSDL extensions but none of them covers exactly this scenario.
- New extension includes multilevel parallelization features.
- This extension describes the aplication requiriments, not the technical details of the infrastructure.

```
<jsdl:Application>
<jsdl:ApplicationName>NAS</jsdl:ApplicationName>
<jsdl:ApplicationVersion>3.0</jsdl:ApplicationVersion>
<jsdl-htc:HTCApplication>
  <jsdl-posix:Executable>BT.D.OpenMP</jsdl-posix:Executable>
  <jsdl-posix:Input>input.dat</jsdl-posix:Input>
  <jsdl-posix:Output>output.dat</jsdl-posix:Output>
  <jsdl-spmd:NumberOfProcesses>1</jsdl-spmd:NumberOfProcesses>
  <jsdl-htc:MinNumThreads>2</jsdl-htc:MinNumThreads>
  <jsdl-htc:MaxNumThreads>4</jsdl-htc:MaxNumThreads>
  <jsdl-htc:MemProcess>1000000</jsdl-htc:MemProcess>
  <jsdl-htc:DiskProcess>1000000</jsdl-htc:DiskProcess>
</isdl-htc:HTCApplication>
<jsdl-htc:HTCApplication>
  <jsdl-posix:Executable>BT.D.4</jsdl-posix:Executable>
  <jsdl-posix:Input>input.dat</jsdl-posix:Input>
  <jsdl-posix:Output>output.dat</jsdl-posix:Output>
  <jsdl-spmd:NumberOfProcesses>4</jsdl-spmd:NumberOfProcesses>
  <jsdl-htc:MaxNumThreads>1</jsdl-htc:MaxNumThreads>
  <jsdl-htc:MemProcess>300000</jsdl-htc:MemProcess>
   <jsdl-htc:DiskProcess>300000</jsdl-htc:DiskProcess>
   <jsdl-spmd:SPMDVariation>
   http://www.ogf.org/jsdl/2007/02/jsd-spmd/MPI
  </isdl-spmd:SPMDVariation>
</jsdl-htc:HTCApplication>
</jsdl:Application>
```

JSDL-HTC example for NAS-MZ BT Benchmark











#### **Developing a specialized portlet:**

- The researcher defines the experiment details in an easy web interface.
- The portlet translates the problem into job requirements and then into a JSDL document.
- This JSDL document describes the job requirements for all the feasible ways to execute the problem (parallel and serial).
- The JSDL template is submitted to Gridway metascheduler.











#### **Adapting Gridway components:**

- Support the new JSDL extension.
- Obtain detailed information about available resources.
- Select the best resources available and the best parallelization mode to start the asap job execution.











### Questions?

### **THANKS!**

Ignacio López Cabido (nlopez@cesga.es)









