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Method of Moments

Solve the integral expressions from Maxwell equations

~E i
tan(~r) = jkη

∫∫
S

~Js(~r
′)G(~r ,~r ′)ds′ − η

jk
∇s

∫∫
S

[
∇′

s · ~Js(~r
′)

]
G(~r ,~r ′)ds′

where G(~r ,~r ′) denotes the free space Green’s function and is defined as:

G(~r ,~r ′) =
e−jk|~r−~r ′|

4π|~r −~r ′|

Method of moments

Expansion of the unknown surface currents ~Js on a set of N geometrical
basis functions:

~Js(~r
′) =

N∑
j=1

Ij~fj(~r
′)

Size of the discretization λ/10× λ/10 (100 unknowns per λ2)
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Method of Moments

Linear system of equations

ZI = V

Z is a N × N matrix (Impedance Matrix)
I is a N × 1 vector (unknown current coefficients)
V is a N × 1 vector (EM source excitation)

Computational complexity
1 Solving ZI = V with matrix factorization or matrix inversion

O(N2) in memory
O(N3) in CPU time

2 Solving ZI = V with iterative methods (e.g. GMRES)
O(N2) in memory
O(N2) in CPU time

All the elements (N) interact with all the elements (N)
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F-18 Radar Cross Section (RCS) analysis

Figure: F18 currents for a
nose plane wave incidence

Bistatic RCS at 1GHz with MoM
Memory: 4TB
CPU time:

SETUP: Several years
Solution

Factorization: Several years
Iterative solution: Several
days

Fast Multipole Methods

Setup and solution are obtained in
less than two hours requiring a few
GB of memory in a conventional PC.



logo

Method of Moments Fast Multipole Method Parallel MLFMM Challenge foundations EMC Challenge Conclusions

Outline

1 Method of Moments

2 Fast Multipole Method

3 Parallel MLFMM
Drawbacks
Previous challenges and records

4 Challenge foundations
HEMCUVE ++
Finis Terrae

5 EMC Challenge
Introduction
Selection of the method
Scalability test
The big example

6 Conclusions



logo

Method of Moments Fast Multipole Method Parallel MLFMM Challenge foundations EMC Challenge Conclusions

Fast Multipole Method

Computational Complexity

Memory can be reduced to O(N3/2) or less

CPU time can be reduced to O(N3/2) for an iterative solver

SETUP time is from O(N) to O(N3/2)

Multilevel versions
Memory order O(N log N)

CPU time order O(N log N)

SETUP time order O(N log N)
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Grouping of interactions

Grouping of geometry

Geometry is clustered in a set of
separated groups

Typically, octree partition is
applied

Interactions between groups

Matrix Z is divided based on the
geometry clustering

Interactions between groups are
represented by blocks of Z
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Multipoles in ZIJ

Interaction between element i ∈ I and j ∈ J

Partial interaction between elements of clusters I and J (elements of ZIJ ) is
decomposed into:

1 Aggregation

2 Translation

3 Disaggregation

Sequencing of steps

In FMM the previous steps are performed
sequentially:

1 All the elements j of each group are
aggregated

2 The aggregation in each group is
translated to all the other groups

3 Finnally, the calculated contribution in
each group is disaggregated:
Contribution in element i
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Reduction in cost

Translation in the spectral domain

Translation in the spectral domain is a DIAGONAL operator.
Using also a spectral transform in the groups, matrix ZIJ can be
decomposed as:

ZIJ = AH
I TIJAJ

where
1 AJ is a full matrix that makes the aggregation of group J
2 TIJ is a diagonal matrix that makes the translation between

groups I and J
3 Disaggregation is the hermitic operator of the aggregation
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Minimal Cost – Group size

ZIJ = AH
I TIJAJ

Aggregation: A Full matrix

Large Groups Full large matrices: O(N2)

Small Groups Small matrices: O(N)

Translation: T Diagonal matrix

Large Groups Few diagonal matrices: O(N)

Small Groups A lot of translations: O(N2)

Tradeoff

If number of groups: O(
√

N). Then, Memory and
CPU become O(N3/2).
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The Multilevel Fast Multipole Method

Recursive implementation of Fast Multipole Method

Two new operators: Vertical
translation between levels

1 Interpolation
2 Anterpolation

Computational Cost

Memory and CPU costs are O(N log N)

Consequence:

The MLFMM has been the usual choice
to solve very large EM problems.
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Drawbacks

Drawbacks of MLFMM parallel implementations

Scalability

Scalability is limited by

Heavy load unbalance

Amdahl’s Law

Memory limitations

Several structures are need to be common to all processors
Memory footprint

Translation operators in low levels
Interpolation/Anterpolation operators in low levels
...
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Drawbacks

Drawbacks of MLFMM parallel implementatios

Improvements

Schemes to improve the load balance
In-core calculation of some structures

Increasing serial fraction: Reduction of scalability
Load unbalance

Limit in the number of processors

The parallelization of MLFMM usually is limited to a maximum
of 8, 16 or 32 processors (achieving a poor efficiency).
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Previous challenges and records

Previous Challenges in Computational
Electromagnetics

RCS of a conducting sphere

W.C. Chew, 2003

Diam 100λ

Unk 10 millions (10, 002, 828)

Gurel, 2007

Diam 192λ

Unk 30 millions (33, 791, 232)

Gurel, 2007 Late

Diam 210λ

Unk 40 millions (41, 883, 648)

UVigo/Unex/CESGA, 2008

Diam 200λ

Unk 30 millions (32, 411, 106)

[??], 2008,2009

Diam > 350λ

Unk > 100 millions
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Previous challenges and records

Gurel MLFMM performance
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HEMCUVE ++

HEMCUVE ++

Electromagnetic methods implemented

Single Level Fast Multipole Method

Multilevel Fast Multipole Method

Parallel implementations

Shared Memory OpenMP implementation

Distributed Memory MPI implementation

Mixed Memory Hybrid MPI/OpenMP implementation

Language

HEMCUVE ++ is implemented in C++
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HEMCUVE ++

Parallel performance of HEMCUVE ++

Implementations

MPI Very high efficiency

OpenMP High efficiency

MPI/OpenMP High efficiency

Multilevel FMM

Parallel efficiency is similar to other implementations

Maximum scalability: 16 to 32 processes

Single level FMM

Specific parallel implementation

Parallel efficiency is very high

Maximum scalability: 512 to 1024 processes, assured
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Finis Terrae

Finis Terrae

142 cc-NUMA Integrity rx7640 nodes

8–dual core Intanium-2 Montvale processors

128GB memory

Infiniband network

Linux SLES 10

2 additional Superdome Integrity nodes

memory/CPU ratio

8GB/CPU minimum

Finis Terrae

More than 2500 cores and more than 19TB of memory
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Introduction

Challenge description

Challenge characteristics

Intensive use of resources: Memory, network and CPU

Use of hundreds of GB and hundreds of processes

Objectives
1 Measurement of the performance of HEMCUVE code
2 Evaluation of the capabilities of Finis Terrae
3 Analysis of an electromagnetic problem with tens of

millions of unknowns
4 Stage previous to beat the WORLD RECORD
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Selection of the method

FMM instead of MLFMM

Multilevel Fast Multipole Method

Poor scalability

Load unbalance

Great footprint in large problems with many processors

Single Level Fast Multipole Method

Good scalability

Medium footprint

Low dependence of memory footprint with the number of processors

Summarizing

Single Level FMM is able to take advantage of large amounts of
resources

Multilevel FMM is not
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Scalability test

More than 7 millions of unknowns

RCS of a Sphere

89.8λ diameter

7.6 millions of unknowns
(7,651,221)

Multiple runs from 8 to 1024
processes
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Scalability test

Scalability. Matrix Vector Product time
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Scalability test

Scalability. Setup time
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The big example

More than 30 millions of unknowns

RCS of a Sphere

200λ diameter

32 millions of unknowns
(32,411,106)

Multiple runs from 8 to 1024
processes

Technical data
512 process

7TB of total memory

Setup time: 4h35m

Time for each MVP: 6m6s

TOTAL Time: 15h10m



logo

Method of Moments Fast Multipole Method Parallel MLFMM Challenge foundations EMC Challenge Conclusions

The big example

Results: Bistatic RCS of the Sphere
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The big example

Results: Currents the Sphere
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Conclusions

Near World Record in Electromagnetics

Only one week in Finis Terrae. Best Time-to-Solution than
any other record

Memory/CPU ratio of Finis Terrae: Solution to problems
irresolvable by other supercomputers with more CPU’s

Scalability: Relegated single Level FMM is very attractive
for high performance scientific challenges.

Is possible more than a hundred of millions?

Gurel: Objective for the next years

U.Vigo/U.Extremadura and CESGA: Several improvements
to achieve a great record in 2008 or 2009.
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Recent improvements

Algorithm improvement

Use of the new algorithm FMM-FFT

Memory and CPU costs are O(N4/3), close to MLFMM

Novel parallellization strategie

Parallelization in Ewald directions (instead of octree cells) → perfect
load balance

Translation matrix distributed among processors → small footprint

Minimal communications between processors (only at the beginning
and the end of each MVP)

Great improvements in efficienty and scalability

The next challenge: over 150 millions of unknowns !!!

Indisputable WORLD RECORD
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