CHALLENGE 3: High Performance Computing Electromagnetics

F. Obelleiro

Universidade de Vigo

CESGA FINISTERRAE
Computation Science Conference, 2008

RESEARCH TEAM

UNIVERSIDAD EXTREMADURA **UNIVERSIDAD DE VIGO**

Luis Landesa José Manuel Taboada Fernando Obelleiro José Luis Rodríguez

Outline

- Method of Moments
- 2 Fast Multipole Method
- Parallel MLFMM
 - Drawbacks
 - Previous challenges and records
- Challenge foundations
 - HEMCUVE ++
 - Finis Terrae
- EMC Challenge
 - Introduction
 - Selection of the method
 - Scalability test
 - The big example
- 6 Conclusions

Outline

- Parallel MLFMN
 - Drawbacks
 - Previous challenges and records
- 4 Challenge foundations
 - HEMCUVE ++
 - Finis Terrae
- **5** EMC Challenge
 - Introduction
 - Selection of the method
 - Scalability test
 - The big example
- 6 Conclusions

Solve the integral expressions from Maxwell equations

$$\vec{E}_{tan}^{j}(\vec{r}) = jk\eta \iint_{S} \vec{J}_{s}(\vec{r}')G(\vec{r},\vec{r}')ds' - \frac{\eta}{jk}\nabla_{s} \iint_{S} \left[\nabla_{s}' \cdot \vec{J}_{s}(\vec{r}')\right]G(\vec{r},\vec{r}')ds'$$

where $G(\vec{r}, \vec{r}')$ denotes the free space Green's function and is defined as:

$$G(\vec{r}, \vec{r}') = \frac{e^{-jk|\vec{r} - \vec{r}'|}}{4\pi |\vec{r} - \vec{r}'|}$$

Method of moments

Expansion of the unknown surface currents \vec{J}_s on a set of N geometrical basis functions:

$$\vec{J}_{\mathrm{s}}(\vec{r}') = \sum_{i=1}^{N} I_{j} \vec{f}_{j}(\vec{r}')$$

Size of the discretization $\lambda/10 \times \lambda/10$ (100 unknowns per λ^2)

Linear system of equations

$$ZI = V$$

Z is a $N \times N$ matrix (Impedance Matrix) I is a $N \times 1$ vector (unknown current coefficients) V is a $N \times 1$ vector (EM source excitation)

Computational complexity

- O Solving ZI = V with matrix factorization or matrix inversion
 - $O(N^2)$ in memory
 - $O(N^3)$ in CPU time
- 2 Solving ZI = V with iterative methods (e.g. GMRES)
 - \circ $O(N^2)$ in memory
 - $O(N^2)$ in CPU time

All the elements (N) interact with all the elements (N)

Linear system of equations

$$ZI = V$$

Z is a $N \times N$ matrix (Impedance Matrix) I is a $N \times 1$ vector (unknown current coefficients) V is a $N \times 1$ vector (EM source excitation)

Computational complexity

- **1** Solving ZI = V with matrix factorization or matrix inversion
 - $O(N^2)$ in memory
 - O(N³) in CPU time
- Solving ZI = V with iterative methods (e.g. GMRES)
 - $O(N^2)$ in memory
 - $O(N^2)$ in CPU time

All the elements (N) interact with all the elements (N)

Linear system of equations

$$ZI = V$$

Z is a $N \times N$ matrix (Impedance Matrix) *I* is a $N \times 1$ vector (unknown current coefficients) *V* is a $N \times 1$ vector (EM source excitation)

Computational complexity

- **1** Solving ZI = V with matrix factorization or matrix inversion
 - O(N²) in memory
 - O(N³) in CPU time
- 2 Solving ZI = V with iterative methods (e.g. GMRES)
 - $O(N^2)$ in memory
 - $O(N^2)$ in CPU time

All the elements (N) interact with all the elements (N)

F-18 Radar Cross Section (RCS) analysis

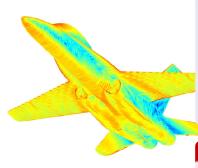


Figure: F18 currents for a nose plane wave incidence

Bistatic RCS at 1GHz with MoM

- Memory: 4TB
- CPU time:
 - SETUP: Several years
 - Solution
 - Factorization: Several years
 - Iterative solution: Several days

Fast Multipole Methods

Setup and solution are obtained in less than two hours requiring a few GB of memory in a conventional PC.

Outline

- 3 Parallel MLFMN
 - Drawbacks
 - Previous challenges and records
- 4 Challenge foundations
 - HEMCUVE ++
 - Finis Terrae
- **5** EMC Challenge
 - Introduction
 - Selection of the method
 - Scalability test
 - The big example
- Conclusions

Fast Multipole Method

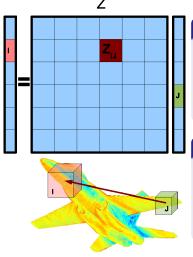
Computational Complexity

- Memory can be reduced to $O(N^{3/2})$ or less
- CPU time can be reduced to $O(N^{3/2})$ for an iterative solver
- SETUP time is from O(N) to $O(N^{3/2})$

Multilevel versions

- Memory order O(N log N)
- CPU time order O(N log N)
- SETUP time order O(N log N)

Grouping of interactions



Grouping of geometry

- Geometry is clustered in a set of separated groups
- Typically, octree partition is applied

Interactions between groups

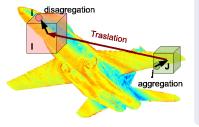
- Matrix Z is divided based on the geometry clustering
- Interactions between groups are represented by blocks of Z

Multipoles in Z_{IJ}

Interaction between element $i \in I$ and $j \in J$

Partial interaction between elements of clusters I and J (elements of Z_{IJ}) is decomposed into:

- Aggregation
- Translation
- Oisaggregation



Sequencing of steps

In FMM the previous steps are performed sequentially:

- All the elements j of each group are aggregated
- 2 The aggregation in each group is translated to all the other groups
- Finnally, the calculated contribution in each group is disaggregated: Contribution in element i

Reduction in cost

Translation in the spectral domain

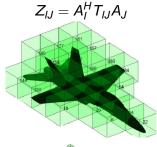
Translation in the spectral domain is a DIAGONAL operator. Using also a spectral transform in the groups, matrix Z_{IJ} can be decomposed as:

$$Z_{IJ} = A_I^H T_{IJ} A_J$$

where

- $oldsymbol{0}$ A_J is a full matrix that makes the aggregation of group J
- T_{IJ} is a diagonal matrix that makes the translation between groups I and J
- Obsaggregation is the hermitic operator of the aggregation

Minimal Cost – Group size



Aggregation: A Full matrix

Large Groups Full large matrices: $O(N^2)$

Small Groups Small matrices: O(N)

Translation: *T* **Diagonal matrix**

Large Groups Few diagonal matrices: O(N)

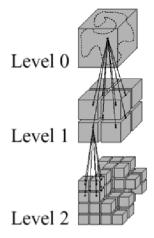
Small Groups A lot of translations: $O(N^2)$

Tradeoff

If number of groups: $O(\sqrt{N})$. Then, Memory and CPU become $O(N^{3/2})$.

The Multilevel Fast Multipole Method

Recursive implementation of Fast Multipole Method



Two new operators: Vertical translation between levels

- Interpolation
- 2 Anterpolation

Computational Cost

Memory and CPU costs are $O(N \log N)$

Consequence:

The MLFMM has been the usual choice to solve very large EM problems.

Outline

- Method of Moments
- 2 Fast Multipole Method
- Parallel MLFMM
 - Drawbacks
 - Previous challenges and records
- 4 Challenge foundations
 - HEMCUVE ++
 - Finis Terrae
- 5 EMC Challenge
 - Introduction
 - Selection of the method
 - Scalability test
 - The big example
- 6 Conclusions

Drawbacks of MLFMM parallel implementations

Scalability

Scalability is limited by

- Heavy load unbalance
- Amdahl's Law

Memory limitations

Several structures are need to be common to all processors

- Memory footprint
 - Translation operators in low levels
 - Interpolation/Anterpolation operators in low levels
 - ..

Drawbacks of MLFMM parallel implementatios

Improvements

- Schemes to improve the load balance
- In-core calculation of some structures
 - Increasing serial fraction: Reduction of scalability
 - Load unbalance

Limit in the number of processors

The parallelization of MLFMM usually is limited to a maximum of 8, 16 or 32 processors (achieving a poor efficiency).

Previous challenges and records

Previous Challenges in Computational Electromagnetics

RCS of a conducting sphere

W.C. Chew, 2003

Diam 100λ

Unk 10 millions (10, 002, 828)

Gurel. 2007

Diam 192)

Unk 30 millions (33, 791, 232)

UVigo/Unex/CESGA, 2008

Diam 2002

Unk 30 millions (32, 411, 106)

Gurel 2007 Late

Diam 210λ

Unk 40 millions (41, 883, 648)

[??], 2008,2009

Diam $> 350\lambda$

Previous challenges and records

Previous Challenges in Computational Electromagnetics

RCS of a conducting sphere

W.C. Chew, 2003

Diam 100λ

Unk 10 millions (10, 002, 828)

Gurel, 2007

Diam 192λ

Unk 30 millions (33, 791, 232)

UVigo/Unex/CESGA, 2008

Diam 2002

Unk 30 millions (32, 411, 106)

Gurel, 2007 Late

Diam 210λ

Unk 40 millions (41, 883, 648)

[??], 2008,2009

Diam > 350

Previous Challenges in Computational Electromagnetics

RCS of a conducting sphere

W.C. Chew, 2003

Diam 100λ

Unk 10 millions (10, 002, 828)

Gurel, 2007

Diam 192λ

Unk 30 millions (33, 791, 232)

UVigo/Unex/CESGA, 2008

Diam 200λ

Unk 30 millions (32, 411, 106)

Gurel, 2007 Late

Diam 210λ

Unk 40 millions (41, 883, 648)

[??], 2008,2009

Diam > 3502

Previous Challenges in Computational Electromagnetics

RCS of a conducting sphere

W.C. Chew, 2003

Diam 100λ

Unk 10 millions (10, 002, 828)

Gurel, 2007

Diam 192λ

Unk 30 millions (33, 791, 232)

UVigo/Unex/CESGA, 2008

Diam 200λ

Unk 30 millions (32, 411, 106)

Gurel, 2007 Late

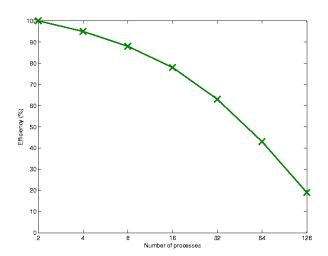
Diam 210λ

Unk 40 millions (41, 883, 648)

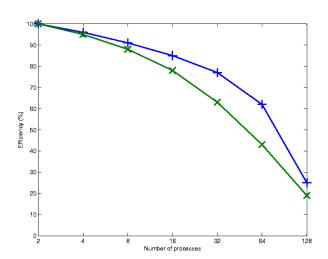
[??], 2008,2009

Diam $> 350\lambda$

Gurel MLFMM performance



Gurel MLFMM performance



Outline

- **1** Method of Moments
- 2 Fast Multipole Method
- Parallel MLFMN
 - Drawbacks
 - Previous challenges and records
- 4 Challenge foundations
 - HEMCUVE ++
 - Finis Terrae
- **5** EMC Challenge
 - Introduction
 - Selection of the method
 - Scalability test
 - The big example
- Conclusions

HEMCUVE ++

HEMCUVE ++

Electromagnetic methods implemented

- Single Level Fast Multipole Method
- Multilevel Fast Multipole Method

Parallel implementations

Shared Memory OpenMP implementation

Distributed Memory MPI implementation

Mixed Memory Hybrid MPI/OpenMP implementation

Language

HEMCUVE ++ is implemented in C++

HEMCUVE ++

Parallel performance of HEMCUVE ++

Implementations

MPI Very high efficiency

OpenMP High efficiency

MPI/OpenMP High efficiency

Multilevel FMM

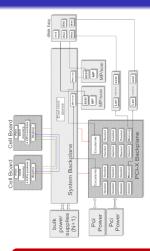
- Parallel efficiency is similar to other implementations
- Maximum scalability: 16 to 32 processes

Single level FMM

- Specific parallel implementation
- Parallel efficiency is very high
- Maximum scalability: 512 to 1024 processes, assured

Finis Terrae

Finis Terrae



142 cc-NUMA Integrity rx7640 nodes

- 8-dual core Intanium-2 Montvale processors
- 128GB memory
- Infiniband network
- Linux SLES 10
- 2 additional Superdome Integrity nodes

memory/CPU ratio

8GB/CPU minimum

Finis Terrae

More than 2500 cores and more than 19TB of memory

Outline

- Method of Moments
- 2 Fast Multipole Method
- Parallel MLFMN
 - Drawbacks
 - Previous challenges and records
- 4 Challenge foundations
 - HEMCUVE ++
 - Finis Terrae
- 5 EMC Challenge
 - Introduction
 - Selection of the method
 - Scalability test
 - The big example
- Conclusions

Challenge description

Challenge characteristics

- Intensive use of resources: Memory, network and CPU
- Use of hundreds of GB and hundreds of processes

Objectives

- Measurement of the performance of HEMCUVE code
- Evaluation of the capabilities of Finis Terrae
- Analysis of an electromagnetic problem with tens of millions of unknowns
- Stage previous to beat the WORLD RECORD

Multilevel Fast Multipole Method

- Poor scalability
- Load unbalance
- Great footprint in large problems with many processors

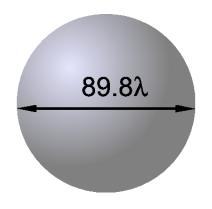
Single Level Fast Multipole Method

- Good scalability
- Medium footprint
- Low dependence of memory footprint with the number of processors

Summarizing

- Single Level FMM is able to take advantage of large amounts of resources
- Multilevel FMM is not

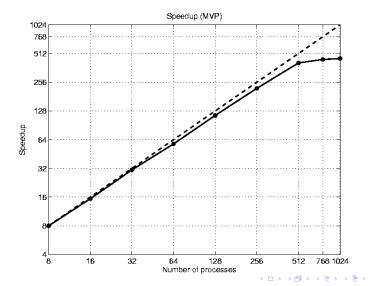
More than 7 millions of unknowns



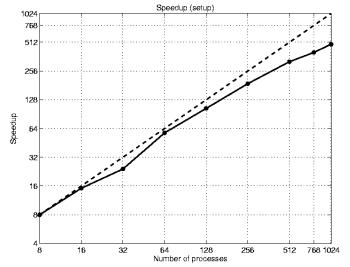
RCS of a Sphere

- 89.8λ diameter
- 7.6 millions of unknowns (7,651,221)
- Multiple runs from 8 to 1024 processes

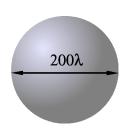
Scalability. Matrix Vector Product time



Scalability. Setup time



More than 30 millions of unknowns



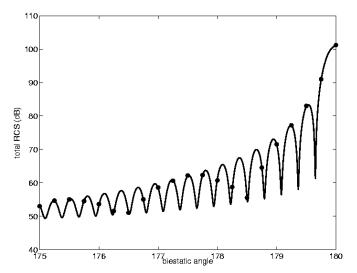
RCS of a Sphere

- 200λ diameter
- 32 millions of unknowns (32,411,106)
- Multiple runs from 8 to 1024 processes

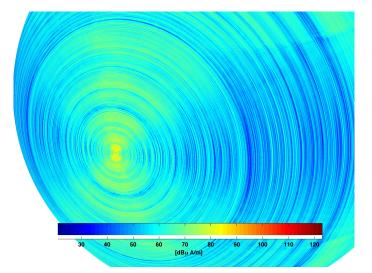
Technical data

- 512 process
- 7TB of total memory
- Setup time: 4h35m
- Time for each MVP: 6m6s
- TOTAL Time: 15h10m

Results: Bistatic RCS of the Sphere



Results: Currents the Sphere



Outline

- Method of Moments
- 2 Fast Multipole Method
- Parallel MLFMN
 - Drawbacks
 - Previous challenges and records
- 4 Challenge foundations
 - HEMCUVE ++
 - Finis Terrae
- **5** EMC Challenge
 - Introduction
 - Selection of the method
 - Scalability test
 - The big example
- Conclusions

Conclusions

Near World Record in Electromagnetics

- Only one week in Finis Terrae. Best Time-to-Solution than any other record
- Memory/CPU ratio of Finis Terrae: Solution to problems irresolvable by other supercomputers with more CPU's
- Scalability: Relegated single Level FMM is very attractive for high performance scientific challenges.

Is possible more than a hundred of millions?

- Gurel: Objective for the next years
- U.Vigo/U.Extremadura and CESGA: Several improvements to achieve a great record in 2008 or 2009.

Recent improvements

Algorithm improvement

- Use of the new algorithm FMM-FFT
- Memory and CPU costs are $O(N^{4/3})$, close to MLFMM

Novel parallellization strategie

- Parallelization in Ewald directions (instead of octree cells) → perfect load balance
- Translation matrix distributed among processors → small footprint
- Minimal communications between processors (only at the beginning and the end of each MVP)

Great improvements in efficienty and scalability

- The next challenge: over 150 millions of unknowns !!!
- Indisputable WORLD RECORD