FINIS TERRAE COMPUTING CHALLENGES

CESGA-FINIS TERRAE COMPUTATIONAL SCIENCE CONFERENCE 2008

INDEX

- Finis Terrae computing challenges
 - Selection
 - Brief description
 - CHALLENGE 1: "PHASE SEPARATION"
 - **CHALLENGE 2: "POINT DISTRIBUTION ON BIDIMENSIONAL** SPHERE"
 - CHALLENGE 3: "ELECTROMAGNETIC COMPATIBILITY"
 - **CHALLENGE 4: "UNDERSTANDING THE MOST MASSIVE STARS** OF THE UNIVERSE WITH GENETIC ALGORITHMS"
 - ✓ Conclusions

Challenges selection

- Different scientific fields / know-how
- Coming from different groups / Institutions / research projects
- Computationally highly demanding

CHALLENGE 1: "PHASE SEPARATION"

- Solid State Physics: Materials Design
- Wien2k: electronic structure calculations of solids using density functional theory (DFT).
- Two levels parallelism:
 - Coarse grain: k points
 - •Fine grain: Scalapack

CHALLENGE 2: "POINT DISTRIBUTION ON BIDIMENSIONAL SPHERE"

- I-MATH: Applied Maths (Potential Theory/Numerical Methods)
- Estimation of Fekete points
- Several parallelizations paradigms:
 - ·MPI
 - •OpenMP
 - •MPI/OpenMP
 - High Throughput

CHALLENGE 3: "ELECTROMAGNETIC COMPATIBILITY"

- Complex structures design
- •HEmCUVE++: Electromagnetic calculations based on FAST MULTIPOLE methods
- Several parallelizations paradigms:
 - •MPI
 - •MPI/OpenMP
- Highly demanding on memory per process: **Balance between required CPU time and** memory demand

CHALLENGE 4: "UNDERSTANDING THE MOST MASSIVE STARS OF THE UNIVERSE WITH GENETIC ALGORITHMS"

- Molecular and Infrared Astrophysics
- •Genetic Algorithms: PIKAIA multimodal optimization problems / FASTWIND

- •MPI master slave schema:
 - master task took care of the GA-related operations
 - slave tasks to perform the model calculations
- •7000 possible models

CONCLUSIONS

- More computational challenges are running right now
- An infrastructure ready to use
- Decreasing time to solution on a wide spectrum of problems

END

THANK YOU!

QUESTIONS

CONTACT:

Aurelio Rodríguez

aurelio@cesga.es

http://www.cesga.es

