GRID TECHNOLOGIES AND RESEARCH AT CESGA

Dr. Andrés Gómez Tato

Adm. Aplicaciones y Proyectos agomez@cesga.es

CENTRO DE SUPERCOMPUTACIÓN DE GALICIA

Legal entities

12

- Public Company
- Public Foundation

Partners

Regional Government of Galicia 70%

National Research Council of Spain 30%

mission statement

- To provide high performance computing, communications resources and services to the scientific community of Galicia and to the National Research Council, as well as, to institutions and enterprises with R&D activity.
- To promote the use of new information and communication technologies applied to research within the scientific community of Galicia.
- **To become** a consolidated <u>RTD Centre of</u> <u>Excellence</u> serving as international scientific and technological reference in the field of computing science and numerical simulation.

CESGA Services

- ✓ <u>HPC y HTC</u>
- ✓ User Data Storage
- Communications Network (only in Galicia)
- <u>E-Learning Rooms (Access</u>
 <u>Grid)</u>
- ✓ GIS
- e-Business

High Performance Computing Group

- Dr. Ignacio López Cabido (Physics)
- Dr. <u>Andrés Gómez Tato</u> (Physics)
- Dr. Carlos Fernández Sánchez (Physics)
- Dr. Javier López Cacheiro (Physics)
- Dr. José Carlos Mouriño Gallego (Computer Eng.)
- Dr. Aurelio Rodríguez López (Chemistry)

CESGA:

- More than 40 technicians
- 22 active projects in Nov. 2006
- ✓ 35 ended projects in the last 5 years
- ALWAYS in Collaboration.

OUR

POLICY

13 years of history

VP-2400 AND Superdome 2003

12

 1993: VP-2400
 2,5 GFLOPS
 0,5 GB RAM

 N° 1 in Spain and N° 145 in the World

2003: SUPERDOME 768 GFLOPS 384 GB RAM

N° 1 in Spain and N° 227 in the World

FinisTerrae 2007

New Server HPC 2007

More than 16 TFLOPS and 19TB RAM Memory

Joint Venture of

FINISTERRAE

SUPERCOMPUTING:

146 ccNUMA Nodes with <u>Itanium II</u> CPUs connected through a high efficiency INFINIBAND network

- 1 node: 128 cores, 1.024 GB memory
- 1 node: 128 CPUs, 384 GB memory

142 nodes: 16 cores, 128 GB memory

2 nodes: 4 cores, 4 GB memory for testing

DATA STORAGE:

- 22 nodes with 44 cores for storage management
- <u>390 TB</u> on disk
- <u>1 PB Robot</u> on Tape Library

MORE TECHNICAL INFORMATION ON REQUEST

GRID PROJECTS: EGEE Int.eu.Grid CESGA-CESCA E-IMRT

LARGEST GRID INITIATIVES in SPAIN (10/2006)

- EU DataGrid
- EU CrossGrid
- LCG (LHC Computing Grid)
- IRISGrid
- EGEE
- EGEE II
- 🔜 DEISA
- Int.Eu.Grid
- IBERGrid Initiative
- Spanish Middleware Thematic Network
- EUMEDGrid
- EELA

CESGA is/was partner in all projects marked in red

EGEE

🐴 Inicio

Ш

10

11

http://grid.ifca.unican.es/egee-sa1-swe/

The Interactive European Grid Project

"Interoperable production-level e-Infrastructure for demanding interactive applications to impact the daily work of researchers"

- Distributed Parallel (MPI) Interactive Computing
 - Distributed Storage at the Tera level
 - User Friendly Access
 - Grid Interactive Desktop

http://www.interactive-grid.eu

Instrument **3** Duration 2 years may '06-april '08

CESGA

because researchers need answers in seconds, not in hours.

The Interactive European Grid Project

- the int.eu.grid project aims to *change the way researchers can use the available e-Infrastructure*, exploiting the <u>interactivity and collaboration</u> possibilities
- **Researchers need to be convinced** that they can:
 - Transfer and process gigabytes of information in minutes
 - Foresee more complex algorithms on larger statistics, test and tune them, use more powerful visualization techniques
 - Collaborate across the network in a rewarding mode, from sharing information to discussing and presenting remotely through enhanced videoconference environments.

because researchers need answers in seconds, not in hours.

The Interactive European Grid Project

"To deploy and operate a production-quality Grid-empowered eInfrastructure oriented to service research communities supporting demanding interactive applications."

Deployment of e-Infrastructure

- Oriented to interactive use
- Site integration support
- Grid operations service
- Middleware for interactivity and <u>MPI</u>
 - 🛛 Adapt/integrate existing middleware 🗔
 - guarantee interoperability with EGEE
- Provide a complete interactivity suite
 - Desktop
 - roaming access
 - scheduler with prioritization services
 - complex visualization.

- **Support for interactive applications**:
 - setup of collaborative environment and VO
 - consideration of performance
 - interactivity and visualization requirements
 - identification and selection of research
 oriented interactive applications

Support remote collaboration activities:

- research, management, integration, training
- Approach target research communities
- Provide security measures for interactivity

CESGA Experiences: a proof of the concept

Some time ago... Year 2003: Grid between 2 supercomputation centers CESGA/CESCA

Real application, a lot of memory required

10

•Many initial tests needed (firewall, application start)

•QoS mechanism needed, high availability..

•The network behave very reasonably, no problem in that sense

ACCESS GRIDS (TORGA.net)

-

A State of the W

ACCESS GRID ROOM NETWORK

E-IMRT

A web-based tool for Monte Carlo optimization

and verification of treatment plans

J. Pena¹, F. Gómez¹, D. González-Castaño¹, A. Gómez²,

C. Fernández², J. C. Mouriño², F. J. González-Castaño³,

D. A. Rodríguez-Silva³, M. Pombar⁴

¹Departamento de Física de Partículas, University of Santiago de Compostela, **Spain** ²Fundación Centro Tecnolóxico de Supercomputación de Galicia (CESGA), Santiago de Compostela, **Spain** ³Departamento de Ingeniería Telemática, University of Vigo, **Spain** ⁴Hospital Clínico Universitario de Santiago, Santiago de Compostela, **Spain**

Financed through Xunta de Galicia project PGIDT05SIN00101CT and partially by the *European Social Fund*

WHAT IS e-IMRT?

It is a project to develop a remote computational platform for treatment

VERIFICATION and OPTIMIZATION

e-IMRT Components Three major components (services):

- Treatment VERIFICATION (Monte Carlo)
- Treatment OPTIMIZATION opment ! Linder developme & IMRT)
- Treatment RESERVOIR: case studies and interesting treatments
- **General requirements**
- Simple, user friendly and <u>algorithm-independent</u>
- Lowest possible human intervention
- Run on low-end hardware & software (client side)
- Anonimization of patient DICOM files

http://eimrt.cesga.es

e-IMRT Treatment verification

Comparison between a TPS-calculated dose distribution and a Monte Carlo-calculated dose distribution for a certain beam arrangement

- **Dose comparison tools:**
 - Gamma maps (Normalized Distance in R⁴)
 - **Distance to agreement (DTA)**
 - etc ...
- Retrieval of:
 - Monte Carlo dose distribution & DVHs

e-IMRT Treatment verification (III)

Linac HEAD simulation

CRT: 1 job per field

IMRT: 1 job per

- Beamlet (step-and-shoot)
- Control point (dynamic) Phantom simulation

1 job per beam

e-IMRT Treatment Visualization(IV)

IMRT

http://eimrt.cesga.es

....

e-IMRT Optimization

- Unconstrained optimization model derived from Wu &
- Mohan Med. Phys 27-4 2000
- Quasi-Newton minjevel@ment ! Under Under
 - Alternating Quasi-Newton stages with heuristics to vary the
 - weights of the constraints \rightarrow Getting multiple solutions.
 - New optimization models welcome!

•

OTHER GRID PROJECTS AT CESGA

PROJECT

CESGA'S RESPONSIBILITY

Retelab Oceanographic Model Implementation	Researcher access management Design & implementation of a virtual lab
Irisgrid: Spanish National Grid Initiative	Executive Committee Member
INES : Spanish Technological Platform for Software & Services	Grid Technology Task Group Coordinator
Galigrid : Study & implementation of a Grid technology based computing platform	Design & implementation of the infrastructure
Producción Grid : Management of the production and use of resources in a Grid environment	Grid architecture definition. Design, development & implementation of GT3 based solution
LCG: LHC Computing Grid	Hosting & support Tier-2 USC

OTHER ICT PROJECTS

•FOLSTEIN

•ADVANCED SERVICES FOR VEHICHES

TELEGERONTOLOGÍA PROTOTIPO II

□ Follows the basic principles of gerontology,
 TELEGERONTOLOGY allows "on line" knowledge evaluations
 and personalize treatments

Using a usual phone line, TV and a special set-top-box developed by the project

TFLE

Mobile

From outdoors to indoors

ADVANCED SERVICES FOR VEHICLES

- CESGA. Web services for off-board car route calculation.
- OTHER: in-board computer, Digital TV, local positioning using WIFI

