This document lists changes to and additional information about Gaussian 98 functionality since the Gaussian 98 User’s Reference was prepared. The final section gives information about building/running on specific OS’s.

Starred items are added or modified for this release. New items start on page 2.

Table of Contents

General Program Topics:
- *Changes in Revision A.11.2 and A.11.3 .. 2
- Changes in Revision A.10/A.11 .. 2
- Required Citation for Gaussian 98 Revision A.10 and Later 2
- New and Fixed Features .. 3
- NBO Dimensions .. 3
- Time-Dependant DFT Changes .. 3
- Counterpoise Corrections .. 3
- Interface to COSMO-RS ... 4
- Updated Input Sections Ordering Table .. 4
- Insignificant Output Change with Revision A.4 and Later 5
- Default Memory .. 5
- Additional Basis Sets ... 6
- Selecting the Numerical Integration Weighting Scheme 6
- IRCMax Description ... 6
- MaxDisk is Obeyed ... 8
- Additional Option to Polar ... 8
- Anisotropic Hyperfine Coupling Constants ... 8
- SCRF PCM and IPCM Model Availability ... 8
- Trajectory Availability ... 8
- ZINDO References .. 9
- Cube Output Format Clarifications ... 9
- Optimization Microiterations ... 9
- New formchk Option ... 9
- Basis Set Clarifications ... 9
- New CBS Method: CBS-QB3 ... 9
- Modified CBS-4 Model and New Keywords .. 9
- New Printing Options for Geom and NMR .. 9
- G3 Methods Added ... 10
- New Redundant Internal Coordinates Generation Scheme for Weakly-Bound Complexes 10
- Change to Charge Generation for Molecular Mechanics Methods 10
- Longer Link 0 Commands Supported ... 10
- Other Minor Corrections/Clarifications to the Printed Manual 10
- Unavailable Features .. 11
- Updated References ... 11
- New References Cited in This Document .. 11
- System-Specific Information ... 13
- Operating System and Software Requirements 13
- *Correct Compiler for Sun Systems .. 13
- Checkpoint Files for 64-bit Integer Versions 13
- *Building IBM RS/6000 Versions ... 13
- System Configuration and Memory Requirements Under UniCOS 14
- *Fortran Compiler and Libraries for Building the Intel Linux Version 14
- Windows Version is NOT Parallel-Enabled .. 15
- Alpha Linux Version Compiler .. 15
- Building Fujitsu VPP300/VPP700/VX Versions 15
Changes in Revision A.11.2 and A.11.3

- With A.11.3, there are changes in the Linux for Intel build procedure. See the System-Specific section for more information.
- Fujitsu PrimePower systems are now supported.
- There are now separate normal and Linda-enabled G98 binaries for Red Hat 6.2 and 7.2 (i.e., 4 versions). Similarly, there are also separate versions of the blas-f2c.a library for the two Red Hat versions. They are both included on the G98 source-code version distribution CD in the /intel top-level directory.
- Building the program on IA-64 systems requires the 6.0 beta version of the Intel compiler (build 20011129 as of this writing). The compiler can be obtained by sending email to joe.wolf@intel.com.

Changes in Revision A.10/A.11

- The required citation has changed (see below).
- The 64-bit integer version is now the standard in the Hitachi and Hewlett-Packard environments as well as for SGI R10000, Sun, IBM Power 3, and Compaq Tru-64 systems. See the system specific section of this document for more information about the implications of this change.
- The makefile has been updated to work with most recent Compaq Alpha compilers.
- Network parallel calculations may be performed on Compaq Alpha Linux systems via the Linda environment.
- Sorting routines now use full 64-bit addresses, so disk space limitations on 64-bit machines are removed.
- NEC systems no longer need to spawn separate subprocesses for each link. The NEC version now requires Super-UX Version 11.1.
- IBM Power 3 executables now use 64-bit pointers as well as integers. There are now four available IBM binary formats: Power 1 (32-bit), Power 2 (32-bit), Power 3 under AIX 4.3 (64-bit), and Power 3 under AIX 5.1 (64-bit). See the system-specific section for information on building in the various IBM environments, as this procedure has changed significantly. Note also that the correct compatible version of Linda must be used with each environment in order to run in parallel.

Required Citation for Gaussian 98 Revision A.10 and Later

The required citation for Revision A.10 and later is different from the one for all earlier Gaussian 98 revisions (replace x with the integer corresponding to your version of the program):

New and Fixed Features
The following features have been added and/or fixed in Revision A.10:

- The PBE1PBE (hybrid) and PBE0PBE (pure) functionals have been added [29-30].
- MP2 frequencies may be computed in the presence of an external electric field (i.e., MP2 Freq Field=...).
- The Freq=Numer Polar Field=... keyword combination is now valid.
- The IRC[StepSize=n] now sets the convergence criteria correctly instead of making them too loose.
- By default, SCI-PCM now turns off charge compensation (as was the case in Gaussian 94).
- The printing of transition densities between excited states using the Time Dependant DFT and HF methods is disabled because not all terms are currently computed. The ground-to-excited state transition densities are correct and are still printed.
- The incorrect exponent for N in the D95 basis has been corrected (results in a 10 microhartree energy change for the atom).
- The special atom types O_3_z, P_3+5, P_3+q, S_3+4, S_3+6, and W_3+6 in the Dreding/UFF force fields are now given the correct values. Previously, they were given the default parameters (e.g. O_3’s for O_3_z).
- The PM3 parameter for Li has been updated per reference [31].

NBO Dimensions
NBO is now dimensioned for 200 atoms and 10000 basis functions.

Time-Dependant DFT Changes
- The TD DFT procedures for pure DFT now does the symmetric problem (a faster algorithm).
- The initial guess for TD DFT does not use improved virtual orbitals (IVOs).
- Using TD=Read to read an initial guess from a calculation on using a pure functional may now be use for a subsequent hybrid DFT functional calculation.
- CIS(Add=n) and TD(Add=n) now imply the Read option as well (they were meaningless without it).

Counterpoise Corrections
Counterpoise corrections may be computed using the Counterpoise keyword (which can be used on an energy calculation, optimization or frequency calculation). The facility cannot be used with ECPs or a general basis set.

The Counterpoise keyword takes an integer value specifying the number of fragments or monomers in the molecular structure. The facility also requires an additional integer to be placed at the end of each atom specification indicating which fragment/monomer it is part of. Here are examples using a Z-matrix (left) and Cartesian coordinates (right):

MP2/6-31G Counterpoise=2 Opt

Counterpoise with Z-matrix

0,1,0,3,1,2	0,1,0,0,0,0,0,0,1	structures begin here	1 0.00 0.00 0.92 1
O,1,ROO,2	9 0.17 0.00 2.73 2		
X,1,1,2,X30	1 0.77 0.00 3.43 2		
H,1,RO1H,3,HOX3,2,90.,0,1	9 0.00 0.00 0.00 1		
H,1,RO1H,3,HOX3,2,-90.,0,1			
X,2,1,1,52.5,3,180.,0			
H,2,RO2H1,6,H7OX,1,180.,0,2			
H,2,RO2H2,6,H8OX,1,0,0,2			

Z-matrix variables...

Note that the Z-matrix input requires a 0 after the dihedral angle value/variable (to indicate that the final angle is a dihedral) prior to the fragment number. Also, the first atom in the Z-matrix must be given in Cartesian coordinates.
Clearly, using Cartesian coordinates for such jobs makes specifying fragment numbers in the input much more straightforward.

The preceding Z-matrix also illustrates the use of fragment-specific charge and spin multiplicity specifications. The format of the corresponding input line in this case is:

\textit{molecule-charge, molecule-spin multiplicity, frag. 1-charge, frag.1 multiplicity, frag. 2 charge, frag. 2 multiplicity}

Interface to COSMO-RS

G98 Revision A.10 and higher can carry out a PCM calculation using Klamt’s form of the conductor reaction field (COSMO) and generate the input data for the COSMO-RS solubility programs.

The \texttt{SCRF=COSMORS} keyword requests a conductor PCM calculation (CPCM) using atomic radii and other parameters as suggested by Klamt for his models. The name of the text file to write with input data for COSMO-RS is read from the input stream, after the geometry, basis set and other data.

Only single-point calculations are possible with COSMORS option. These calculations will typically be done as single-point solvated calculations using \texttt{SCRF=CPCM} optimized geometries.

Here is a sample input file:

```plaintext
# B3LYP/6-311+G(2d,2p) SCF=(Tight) SCRF=COSMORS
Water generating COSMO-RS input
0 1
o
h,1,r
h,1,r,2,a
r .96
a 104.5
water.cosmo
```

This produces the data file \textit{water.cosmo}.

COSMO-RS is distributed as COSMOtherm by COSMOlogic GmbH, \url{www.cosmologic.de}.

Updated Input Sections Ordering Table

This table from the introduction to chapter 3 of the manual has been updated. The new table is printed below:

<table>
<thead>
<tr>
<th>Section</th>
<th>Keywords</th>
<th>Final blank-line?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link 0 commands</td>
<td>% commands</td>
<td>no</td>
</tr>
<tr>
<td>Route Section (# lines)</td>
<td>all</td>
<td>yes</td>
</tr>
<tr>
<td>Extra Overlays</td>
<td>ExtraOverlays</td>
<td>yes</td>
</tr>
<tr>
<td>Title section</td>
<td>all</td>
<td>yes</td>
</tr>
<tr>
<td>Molecule specification</td>
<td>all</td>
<td>yes</td>
</tr>
<tr>
<td>Modifications to coordinates</td>
<td>Opt=ModRedundant</td>
<td>yes</td>
</tr>
<tr>
<td>Connectivity specifications</td>
<td>Geom=Connect or ModConnect</td>
<td>yes</td>
</tr>
<tr>
<td>2nd title’ and molecule specification</td>
<td>Opt=QST2 or QST3</td>
<td>yes</td>
</tr>
<tr>
<td>Modifications to 2nd set of coordinates</td>
<td>Opt=ModRedun and QST2 or QST3</td>
<td>yes</td>
</tr>
<tr>
<td>Connectivity specifications for 2nd set of coordinates</td>
<td>Geom=Connect or ModConnect and Opt=ModRedun and QST2 or QST3</td>
<td>yes</td>
</tr>
<tr>
<td>Section</td>
<td>Keywords</td>
<td>Final blank-line?</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>3rd title† and initial TS structure</td>
<td>Opt=QST3</td>
<td>yes</td>
</tr>
<tr>
<td>Modifications to 3rd set of coordinates</td>
<td>Opt=(ModRedun, QST3)</td>
<td>yes</td>
</tr>
<tr>
<td>Connectivity specifications for 3rd set of coordinates</td>
<td>Geom=Connect or ModConnect</td>
<td>yes</td>
</tr>
<tr>
<td>Initial force constants (Cartesian)</td>
<td>Opt=(ModRedun, QST3)</td>
<td>yes</td>
</tr>
<tr>
<td>Accuracy of energy & forces</td>
<td>Opt=FCCards</td>
<td>yes</td>
</tr>
<tr>
<td>Trajectory input (multiple sections depending on options selected)</td>
<td>Opt=ReadError</td>
<td>no</td>
</tr>
<tr>
<td>Atomic masses</td>
<td>IRC=ReadIsotopes</td>
<td>yes</td>
</tr>
<tr>
<td>Basis set specification</td>
<td>Gen, ExtraBasis</td>
<td>yes</td>
</tr>
<tr>
<td>Basis set alterations</td>
<td>Massage</td>
<td>yes</td>
</tr>
<tr>
<td>ECP specification</td>
<td>ExtraBasis, Pseudo=Cards</td>
<td>yes</td>
</tr>
<tr>
<td>Background charge distribution</td>
<td>Charge</td>
<td>yes</td>
</tr>
<tr>
<td>Finite field coefficients</td>
<td>Field=Read</td>
<td>yes</td>
</tr>
<tr>
<td>Symmetry types to combine</td>
<td>Guess=LowSymm</td>
<td>no</td>
</tr>
<tr>
<td>Orbital specifications‡</td>
<td>Guess=Cards</td>
<td>yes</td>
</tr>
<tr>
<td>Orbital alterations‡</td>
<td>Guess=Alter</td>
<td>yes</td>
</tr>
<tr>
<td>Solvation model parameters</td>
<td>SCRF</td>
<td>no</td>
</tr>
<tr>
<td>PCM solvation model input</td>
<td>SCRF=(PCM, Read)</td>
<td>yes</td>
</tr>
<tr>
<td>Weights for CAS state averaging</td>
<td>CASSCF=StateAverage</td>
<td>no</td>
</tr>
<tr>
<td>States of interest for spin orbit coupling</td>
<td>CASSCF=Spin</td>
<td>no</td>
</tr>
<tr>
<td># orbitals/GVB pair</td>
<td>GVB</td>
<td>no</td>
</tr>
<tr>
<td>Alternate atomic radii</td>
<td>Pop=ReadRadii or ReadAtRadii</td>
<td>yes</td>
</tr>
<tr>
<td>Data for electrostatic properties</td>
<td>Prop=Read or Opt</td>
<td>yes</td>
</tr>
<tr>
<td>Cube filename (§ & spec. for Cards option)</td>
<td>Cube</td>
<td>yes</td>
</tr>
<tr>
<td>NBO input</td>
<td>Pop=NBORead</td>
<td>no</td>
</tr>
<tr>
<td>Orbital freezing information</td>
<td>ReadWindow option</td>
<td>yes</td>
</tr>
<tr>
<td>OVGF orbitals to refine</td>
<td>R/UOVGF 109(9/11=100)</td>
<td>yes</td>
</tr>
<tr>
<td>Temperature, pressure, atomic masses</td>
<td>Freq=ReadIsotopes</td>
<td>no</td>
</tr>
<tr>
<td>PROAIMS wavefunction filename</td>
<td>Output=WFN</td>
<td>no</td>
</tr>
</tbody>
</table>

† A blank line also separates the second or third title section from the corresponding molecule specification.
‡ UHF jobs use separate \(\alpha \) and \(\beta \) sections (themselves separated by a blank line).

Insignificant Output Change with Revision A.4 and Later

The reported number of primitive gaussians will differ between revisions A.4 and later and previous revisions. Note that this change has no effect on the results of the calculation since it is an arbitrary, completely informational statistic not used in any actual computation. Previously, this value indicated the number of AO components of gaussian primitives in terms of pure d functions if you were using pure contracted functions in the calculation. Now, it always counts Cartesians regardless of the types of contracted functions in use.

Default Memory

The default memory amount in G98 is 6MW.
Additional Basis Sets
The EPR-II and EPR-III basis sets of Barone [1] are included in Gaussian 98. They are optimized for the computation of hyperfine coupling constants by DFT methods (particularly B3LYP). EPR-II is a double zeta basis set with a single set of polarization functions and an enhanced s part: (6,1)/[4,1] for H and (10,5,1)/[6,2,1] for B to F. EPR-III is a triple-zeta basis set including diffuse functions, double d-polarizations and a single set of f-polarization functions. Also in this case the s-part is improved to better describe the nuclear region: (6,2)/[4,2] for H and (11,7,2,1)/[7,4,2,1] for B to F. The basis sets are available for H, B, C, N, O and F.

Selecting the Numerical Integration Weighting Scheme
The following options to select the numerical integration weighting scheme have been added to the Integral keyword:

SSWeights Use the weighting scheme of Scuseria and Stratman [3] for the numerical integration for DFT calculations. This is the default.

BWeights Use the weighting scheme of Becke for numerical integration. This was the default in Gaussian 94.

IRCMax Description
The description of the IRCMax keyword has been updated:

DESCRIPTION
Performs an IRCMax calculation using the methods of Petersson and coworkers [4-12]. Taking a transition structure as its input, this calculation type finds the maximum energy along a specified reaction path.

REQUIRED INPUT
IRCMax requires two model chemistries as its options, separated by a colon: **IRCMax**(model2:model1). Here is an example route section:

IRCMax(B3LYP/6-31G(d,p):HF/6-31G(d,p))

This calculation will find the point on the HF/6-31G(d,p) reaction path where the B3LYP/6-31G(d,p) energy is at its maximum.

The **Zero** option will produce the data required for zero curvature variational transition state theory (ZC-VTST) [5, 6, 9-12]. Consider the following route:

IRCMax(MP2/6-31G(d):HF/3-21G(d),Zero,Stepsize=10)

This job will start from the HF/3-21G(d) TS and search along the HF/3-21G(d) IRC with a stepsize of 0.1 amu-1/2 bohr until the maximum of the MP2/6-31G(d) energy (including the HF/3-21G(d) ZPE) is bracketed. The position along the HF/3-21G(d) IRC for this MP2/6-31G(d) TS will then be optimized. The output includes all quantities required for the calculation of reaction rates using the ZC-VTST version of absolute rate theory: TS moments of inertia, all real vibrational frequencies (HF/3-21G(d)), the imaginary frequency for tunneling (fit to MP2/6-31G(d) + ZPE), and the total MP2/6-31G(d) + ZPE energy of the TS.

ZC-VTST OPTIONS
Zero Include the zero-point energy in the IRCMax computation.

PATH SELECTION OPTIONS
Forward Follow the path only in the forward direction.

Reverse Follow the path only in the reverse direction.
ReadVector Read in the vector to follow. The format is Z-matrix (FFF(1), I=1,NVAR), read as (8F10.6).

MaxPoints=N Number of points along the reaction path to examine (in each direction if both are being considered). The default is 6.

StepSize=N Step size along the reaction path, in units of 0.01 amu$^{-1/2}$-Bohr. The default is 10.

MaxCyc=N Sets the maximum number of steps in each geometry optimization. The default is 20.

Freq Calculate the projected vibrational frequencies for motion perpendicular to the path, for each optimized point on the path [13]. This option is valid only for reaction paths in mass-weighted internal coordinates.

COORDINATE SYSTEM SELECTION OPTIONS

MassWeighted Follow the path in mass-weighted internal (Z-matrix) coordinates (which is equivalent to following the path in mass-weighted Cartesian coordinates). MW is a synonym for MassWeighted. This is the default.

Internal Follow the path in internal (Z-matrix) coordinates without mass weighting.

Cartesian Follow the path in Cartesian coordinates without mass weighting.

ISOTOPE SPECIFICATION OPTION

ReadIsotopes Specify alternate isotopes (the defaults are the most abundant isotopes). This information appears in a separate input section having the format:

\[
isotope mass for atom 1 \\
isotope mass for atom 2 \\
... \\
isotope mass for atom n
\]

where the lines hold the isotope masses for the various atoms in the molecule, arranged in the same order as they appeared in the molecule specification section. If integers are used to specify the atomic masses, the program will automatically use the corresponding actual exact mass (e.g., 18 specifies O18, and Gaussian 98 uses the value 17.99916).

CONVERGENCE-RELATED OPTION

VeryTight Tightens the convergence criteria used in the optimization at each point along the path. This option is necessary if a very small step size along the path is requested.

OPTIONS FOR GENERATING INITIAL FORCE CONSTANTS

CalcFC Specifies that the force constants be computed at the first point

CalcAll Specifies that the force constants be computed at every point.

FCCards Reads the Cartesian forces and force constants from the input stream after the molecule specifications. This option can be used to read force constants recovered from the Quantum Chemistry Archive using its internal FList command. The format for this input is:

\[
Energy \ (format \ D24.16) \\
Cartesian \ forces \ (lines \ of \ format \ 6F12.8) \\
Force \ constants \ (lines \ of \ format \ 6F12.8)
\]
The force constants are in lower triangular form: \((F(J,I), J=1, I=1, NAt3)\), where \(NAt3\) is the number of Cartesian coordinates. If both \(FCCards\) and \(ReadIsotopes\) are specified, the masses of the atoms are input before the energy, Cartesian gradients and the Cartesian force constants.

Note that the \(RCFC\) option is not supported with IRCMax.

RESTART OPTION

Restart

Restarts an IRC calculation which did not complete, or restarts an IRC calculation which did complete, but for which additional points along the path are desired.

AVAILABILITY

Analytic gradients are required for the IRC portion of the calculation (\(model1\) above). Any non-compound energy method and basis set may be used for \(model2\).

RELATED KEYWORDS

IRC, Opt, Freq

MaxDisk is Obeyed

MP3, MP4, QCISD, CCSD, QCISD(T), and CCSD(T) calculations all now look at \(MaxDisk\). If the calculation can be done using a full integral transformation while keeping disk usage under \(MaxDisk\), this is done; if not, a partial transformation is done and some terms are computed in the AO basis. Since MP2 obeys MaxDisk as much as possible, the \(Stingy\), \(NoStingy\) and \(VeryStingy\) options are not needed.

Thus, it is crucial for a value for MaxDisk to be specified explicitly for these types of jobs, either within the route section or via a system wide setting in the \(Default.Route\) file. If \(MaxDisk\) is left unset, the program now assumes that disk is abundant and performs a full transformation by default, in contrast to G94 where a partial transformation was the default in such cases. If \(MaxDisk\) is not set and sufficient disk space is not available for a full transformation, the job will fail (where it may have worked in G94).

Additional Option to Polar

The \(Polar\) keyword has an additional option:

Analytic

Compute polarizability and hyperpolarizability analytically. This is possible for RHF and UHF for which it is the default. The polarizability is always computed during analytic frequency calculations.

Anisotropic Hyperfine Coupling Constants

The \(Prop\) keyword now supports the \(EPR\) option:

EPR

Compute the anisotropic hyperfine coupling constants [1, 14, 15].

SCRF PCM and IPCM Model Availability

The PCM models are available for HF, DFT, MP2, MP3, MP4(SDQ), QCISD, CC, CID, and CISD energies and HF and DFT gradients.

Trajectory Availability

Trajectory calculations may be performed at the MP2 level as well as the methods listed in the manual.
ZINDO References
References for the ZINDO method are now provided [16-24].

Cube Output Format Clarifications
The norm of the density gradient and the Laplacian are also scalar (i.e., one value per point), and are written out in the same manner. Density+gradient grids are similar, but with two writes for each row (of lengths N_3 and 3^*N_3).

Note that all cube files are formatted; requests for unformatted cube files are currently ignored.

Optimization Microiterations
The use of microiterations in geometry optimizations is the default for MM optimizations and ONIOM optimizations with an MM component. Use the Opt=NoMicro option to turn off microiterations.

New formchk Option
The command formchk -c causes the molecular mechanics atom types to appear in the formatted checkpoint file as strings rather than integers.

Basis Set Clarifications
The SDD basis set keyword consists of D95 up to Ar and then a variety of Stuttgart potentials for $Z > 18$ (see the manual). The SDDAll keyword selects Stuttgart potentials for $Z > 2$. The $\text{SDD, SHF, SDF, MHF, MDF, MWB}$ forms may be used to specify these basis sets/potentials within Gen basis input. Note that the number of core electrons must be specified following the form (e.g., MDF28 for the MDF potential replacing 28 core electrons).

The Midi! basis set (keyword MidiX) is now implemented for H, C-F, Si-Cl, I and Br.

New CBS Method: CBS-QB3
The CBS-QB3 keyword may be used to select the CBS-QB3 method [25]. The CBS-QB3 method has been updated to use the new and more stable Minimal Population localization procedure. This will cause small differences in the CBS-QB3 energy computed with pre-A.7 versions of Gaussian 98, but it is more reliable for large molecules. The CBS-QB3O keyword requests the CBS-QB3 model with the earlier localization scheme, if comparison with previous results is necessary.

Modified CBS-4 Model and New Keywords
The CBS-4 model chemistry has been updated with both the new localization procedure (discussed in the preceding item) and improved empirical parameters. The new version CBS-4M (M referring to the use of Minimal Population localization) is recommended for new studies; the CBS-4O keyword requests the earlier parametrization. Since these can give significantly different results the previous CBS-4 keyword prints an error message rather than defaulting to either version.

New Printing Options for Geom and NMR
The $\text{Geom=PrintInputOrient}$ option has been added to include the table giving the cartesian coordinates in the input orientation. By default, this table is printed for smaller molecules but omitted for large ones. The $\text{NMR=PrintEigenvectors}$ option has been added to display the eigenvectors of the shielding tensor for each atom.
G3 Methods Added
The recently published G3 [26] and G3MP2 [27] methods have been added, along with the variants using B3LYP structures and frequencies, G3B3 and G3MP2B3 [28] (using these keywords).

New Redundant Internal Coordinates Generation Scheme for Weakly-Bound Complexes
The generation of redundant internal coordinates for weakly bound complexes has been updated. The HBond and AllHBond keywords never did what the documentation suggested (and they have been removed); what is done in revision A.7 and higher is to include Hydrogen bonds automatically. In addition, in connecting different fragments which are only weakly bound (hydrogen-bonded and otherwise), all pairs of atoms with one atom in each fragment having distance within a factor of 1.3 of the closest pair have their distances added to the internal coordinates. If at least 3 such pairs are found, then no angles or dihedrals involving both fragments are added. However, if only 1 or two pairs of atoms are close, then the related angles and dihedrals are added in order to ensure a complete coordinate system. As usual, the ModRedundant option can be used to add or remove any coordinates manually.

Change to Charge Generation for Molecular Mechanics Methods
Beginning in Revision A.7, no charges are assigned to atoms by default when using any molecular mechanics force field. Options are available to estimate charges at the initial point using the QEq algorithm under control of the following options for any of the mechanics keywords:

- **QEq**: Assign charges to all atoms.
- **Untyped**: Assign charges only to those atoms for which the user did not specify a particular type in the input.
- **UnCharged**: Assign charges for all atoms which have charge zero (i.e., all atoms which were untyped or which were given a type but not a charge in the input).

Longer Link 0 Commands Supported
Link 0 commands (%) lines can now be up to 500 characters long.

Other Minor Corrections/Clarifications to the Printed Manual
- The IRC keyword supports a CalcAll option.
- The only valid separator between the various methods for an IRCMax calculation is a colon. In particular, a double slash (//) will not work.
- The Density is ignored when used with ZINDO.
- Defaults for the FMM keyword have been set.
- The default algorithm for optimizations without gradients is EF.
- Charge obeys the Units keyword, contrary to manual.
- The example job in the ONIOM discussion uses the Amber MM method without specifying atom types in the molecule specification. This will generate an error since Amber always requires that explicit atom types be input. Changing Amber to UFF in this job will make the example run correctly.
- The DFT keyword G961LYP is not implemented.
- The keyword sequence MP2 NMR=GIAO is broken and performs only an MP2 energy calculation. Use MP2 NMR to perform a GIAO NMR calculation at the MP2 level.
- Int=NoSymmComp may be used to turn off symmetry blocking of MO 2-electron integrals. NoSymmComp is a synonym for NoSymmComp.
- The BiMolecularReactant and BiMolecularProduct options to the Opt keyword are not implemented. The BiMolecular option is provided, however.
- Opt(StepSize=n) does not work. One must use IOp(1/8=n) instead.
Unavailable Features
A few features documented in the manual will not appear Gaussian 98:

♦ The Becke96 gradient-corrected exchange functional (accordingly, B1B96 is also deferred).
♦ The B1PW91 functional is not implemented.
♦ Support for compound energy methods with IRCMax.
♦ Support for the Phase, Freq and Downhill options to IRC.

Updated References
The following reference citations have been updated/corrected:

New References Cited in This Document

System-Specific Information

Operating System and Software Requirements
Be sure to check the Gaussian web site regularly for information about required operating system and compiler revision levels for systems upon which you want to build the program. Any patches required by specific hardware and/or operating system levels are also listed here. You can go directly to this page with the URL: www.gaussian.com/g98_req.htm.

*Correct Compiler for Sun Systems
Sun users should be using the cc command from /opt/SUNWspro/bin and not from /usr/ucb. Be sure that the first directory is included in your path and that it appears in it before /usr/ucb.

Checkpoint Files for 64-bit Integer Versions:
SGI R10000, Sun, IBM Power 3, Hitachi, Hewlett-Packard, Compaq Tru-64
By default, the SGI R10000, Sun and AIX Power 3 versions are built using 64-bit integers. This removes the previous limits of 16 GB of main memory and 16 GB disk space imposed in previous versions, but means that checkpoint files from earlier revisions of Gaussian 98 cannot be used directly by Revision A.8 or higher in the case of SGI, Sun and IBM or by Revision A.10 in the case of Hitachi and Hewlett-Packard.

To convert old IBM, Sun or SGI checkpoint files, use the copy of formchk or chkmove from revision A.6 to convert them to formatted files, then use unfchk or chkmove from A.8 to convert them back to binary form. In the case of Hitachi, use the copy of formchk or chkmove from revision A.9 or earlier to convert old binary checkpoint files to formatted files, then use unfchk or chkmove from A.10 to convert them back to binary form.

*Building IBM RS/6000 Versions
The procedure for compiling Gaussian 98 from source code on IBM RS/6000 systems has been changed for A.10. Because of difficulties with IBM’s ESSL library, we have switched to the public-domain ATLAS libraries for turned matrix operation subroutines. Since building ATLAS can be cumbersome, we have included the ATLAS libraries on the G98 source CD, in the /atlas top-level directory.

The G98 makefile expects to find the two ATLAS libraries in /usr/local/lib. Thus, before compiling G98, the appropriate versions of the libraries should be copied to this location. If a different location is chosen for these libraries, then the file g98/bsd/rs6k.make must be edited to reflect the change. The libraries provided are:

<table>
<thead>
<tr>
<th>Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>power1-4.3-libatlas.a</td>
<td>Use with Power 1 machines and either AIX 4.3 or AIX 5.1 (32-bit version).</td>
</tr>
<tr>
<td>power1-4.3-libf77blas.a</td>
<td>Use with Power 2 machines and either AIX 4.3 or AIX 5.1 (32-bit version).</td>
</tr>
<tr>
<td>power2-4.3-libatlas.a</td>
<td>Use with Power 3 machines and AIX 4.3 only (64-bit version).</td>
</tr>
<tr>
<td>power2-4.3-libf77blas.a</td>
<td>Use with Power 3 machines and AIX 5.1 only (64-bit version).</td>
</tr>
<tr>
<td>power3-4.3-libatlas.a</td>
<td>Use with Power 3 machines and AIX 4.3 only (64-bit version).</td>
</tr>
<tr>
<td>power3-5.1-libatlas.a</td>
<td>Use with Power 3 machines and AIX 5.1 only (64-bit version).</td>
</tr>
<tr>
<td>power3-5.1-libf77blas.a</td>
<td>Use with Power 3 machines and AIX 5.1 only (64-bit version).</td>
</tr>
</tbody>
</table>

Note that G98 is built as a 64-bit program for the Power 3 machines, and that AIX 4.3 and AIX 5.1 have different and incompatible binary formats for 64-bit programs. Consequently, there are four pairs of libraries:
For example, for a Power 3 machine running AIX 4.3, execute the following commands (the percent sign is the C shell prompt and should not be typed):

```
% cp /CDROM/atlas/power3-4.3-libf77blas.a /usr/local/lib/libf77blas.a
% cp /CDROM/atlas/power3-4.3-libatlas.a /usr/local/lib/libatlas.a
```

where /CDROM should be replaced with the path to the CDROM drive.

Once the proper libraries are copied, the program can be built as follows (the percent sign is the C shell prompt and should not be typed):

Power 3 systems:
```
% cd $g98root/g98
% source bsd/g98.login
% bsd/bldg98 >& g98_build.log
```

Power 2 systems:
```
% cd $g98root/g98
% source bsd/g98.login
% bsd/bldg98 all ibmp2 >& g98_build.log
```

Power 1 systems:
```
% cd $g98root/g98
% source bsd/g98.login
% bsd/bldg98 all ibmp1 >& g98_build.log
```

System Configuration and Memory Requirements Under UniCOS
Process and job memory limits should be set to 0; otherwise, the default memory used will be 90% of all available memory (rather than 4MB as in other versions of *Gaussian 98*). This can be done by giving input similar to the following to `udbgen`:

```
update:username:pmemlim[b]:0:jmemlim[b]:0:jmemlim[i]:0:
```

G98 takes more fixed memory on UniCOS systems. When running in NQS batch queues, make sure that the NQS batch memory limit is at least 6 million words larger than the value desired or specified for `%Mem`.

Fortran Compiler and Libraries for Building the Intel Linux Version
The Intel Linux version requires the Portland Group Fortran compiler (see www.pgroup.com).

The procedure for compiling *Gaussian 98* from source code on Intel Linux systems has been changed for A.11.3. We use the public-domain ATLAS libraries for turned matrix operation subroutines. Since building ATLAS can be cumbersome, we have included the ATLAS libraries on the G98 source CD, in the `/atlas` top-level directory.

The G98 `makefile` expects to find the two ATLAS libraries in `/usr/local/lib`. Thus, before compiling G98, the appropriate versions of the libraries should be copied to this location. If a different location is chosen for these libraries, then the file `g98/bsd/i386.make` must be edited to reflect the change. The libraries provided are:

- PIII-RH7-libatlas.a
- PIII-RH7-libf77blas.a

These libraries can be used with any Linux version (we’ve tested with Red Hat 6 as well), and with the Pentium 4 as well. You can install the libraries from the CD using the following commands (the percent sign is the C shell prompt and should not be typed):

```
% cp /CDROM/atlas/PIII-RH7-libf77blas.a /usr/local/lib/libf77blas.a
% cp /CDROM/atlas/PIII-RH7-libatlas.a /usr/local/lib/libatlas.a
```

where /CDROM should be replaced with the path to the CDROM drive.
Once the proper libraries are copied, the program can be built as follows:

```bash
% cd $g98root/g98
% source bsd/g98.login
% bsd/bldg98 >& g98_build.log
```

- **Windows Version is NOT Parallel-Enabled**
 Do not set the Windows environment variable `MKL_NPROCS` to a value greater than 1 in an attempt to make the program run in parallel. This will result in the program still using only a single processor, but a significant amount of gratuitous overhead will be expended anyway.

- **Alpha Linux Version Compiler**
 The Linux version of the program for the Compaq Alpha platform must be built using the Compaq Fortran compiler. GNU compilers will not work.

- **Building Fujitsu VPP300/VPP700/VX Versions**
 By default, the Fujitsu version of the Gaussian 98 makefile (`$g98root/g98/bsd/fujitsu.make`) is configured to build the VPP800/VPP5000 version of the code. VX/VPP300/VPP700/VX users must edit this file according to the instructions contained within it.